scholarly journals Small RNAs Worm Up Transgenerational Epigenetics Research

DNA ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 37-48
Author(s):  
Alla Grishok

DNA is central to the propagation and evolution of most living organisms due to the essential process of its self-replication. Yet it also encodes factors that permit epigenetic (not included in DNA sequence) flow of information from parents to their offspring and beyond. The known mechanisms of epigenetic inheritance include chemical modifications of DNA and chromatin, as well as regulatory RNAs. All these factors can modulate gene expression programs in the ensuing generations. The nematode Caenorhabditis elegans is recognized as a pioneer organism in transgenerational epigenetic inheritance research. Recent advances in C. elegans epigenetics include the discoveries of control mechanisms that limit the duration of RNA-based epigenetic inheritance, periodic DNA motifs that counteract epigenetic silencing establishment, new mechanistic insights into epigenetic inheritance carried by sperm, and the tantalizing examples of inheritance of sensory experiences. This review aims to highlight new findings in epigenetics research in C. elegans with the main focus on transgenerational epigenetic phenomena dependent on small RNAs.

2019 ◽  
Vol 53 (1) ◽  
pp. 289-311 ◽  
Author(s):  
Natasha E. Weiser ◽  
John K. Kim

In animals, small noncoding RNAs that are expressed in the germline and transmitted to progeny control gene expression to promote fertility. Germline-expressed small RNAs, including endogenous small interfering RNAs (endo-siRNAs) and Piwi-interacting RNAs (piRNAs), drive the repression of deleterious transcripts such as transposons, repetitive elements, and pseudogenes. Recent studies have highlighted an important role for small RNAs in transgenerational epigenetic inheritance via regulation of heritable chromatin marks; therefore, small RNAs are thought to convey an epigenetic memory of genomic self and nonself elements. Small RNA pathways are highly conserved in metazoans and have been best described for the model organism Caenorhabditis elegans. In this review, we describe the biogenesis, regulation, and function of C. elegans endo-siRNAs and piRNAs, along with recent insights into how these distinct pathways are integrated to collectively regulate germline gene expression, transgenerational epigenetic inheritance, and ultimately, animal fertility.


2020 ◽  
Author(s):  
Jan Schreier ◽  
Sabrina Dietz ◽  
Antonio M. de Jesus Domingues ◽  
Ann-Sophie Seistrup ◽  
Dieu An H. Nguyen ◽  
...  

SUMMARYTransgenerational epigenetic inheritance (TEI) describes the transmission of gene-regulatory information across generations without altering DNA sequences, and allows priming of offspring towards transposable elements (TEs) and changing environmental conditions. One important mechanism that acts in TEI is based on small non-coding RNAs. Whereas factors for maternal inheritance of small RNAs have been identified, paternal inheritance is poorly understood, as much of the cellular content is extruded during spermatogenesis. We identify a phase separation-based mechanism, driven by the protein PEI-1, which is characterized by a BTB-BACK domain and an intrinsically disordered region (IDR). PEI-1 specifically secures the Argonaute protein WAGO-3 within maturing sperm in C. elegans. Localization of PEI granules in mature sperm is coupled, via S-palmitoylation, to myosin-driven transport of membranous organelles. pei-1-like genes are also found in human and often expressed in testis, suggesting that the here identified mechanism may be broadly conserved.


2021 ◽  
Author(s):  
Canran Feng ◽  
Kyosuke Torimaru ◽  
Mandy Yu Theng Lim ◽  
Li-Ling Chak ◽  
Kosuke Tsuji ◽  
...  

Small regulatory RNAs (sRNAs) are involved in anti-viral defense and gene regulation. Although RNA-dependent RNA Polymerases (RdRPs) are known to produce sRNA in nematodes, plants and fungi, whether they play roles in sRNA biogenesis in other animals remains controversial. In this study, we study sRNAs in the ISE6 cell line, which is derived from the black-legged tick, an important vector of human and animal pathogens. We identify abundant classes of ~22nt sRNAs that require specific combinations of RdRPs and sRNA effector proteins (Argonautes or AGOs). RdRP-dependent sRNAs are mainly derived from sense and antisense strands of RNA polymerase III-transcribed genes and repetitive elements. Unlike C. elegans sRNA pathways, 5′-tri-phosphorylated sRNAs are not detected, suggesting that the tick pathways are distinct from the pathways known in worms. Knockdown of one of the RdRPs unexpectedly results in downregulation of a subset of viral transcripts, in contrast to their upregulation by AGO knockdown. Furthermore, we show that knockdown of AGO/RdRP causes misregulation of protein-coding genes including RNAi-related genes, suggesting feedback regulation. Luciferase assays demonstrate that one of the RdRP-regulated genes, the MEK1 ortholog IscDsor1 is regulated through its 3′UTR, where a putative sRNA target site resides. These results provide evidence that arachnid RdRPs are important sRNA biogenesis factors, and the discovery of novel pathways underscores the importance of characterizing sRNA biogenesis in various organisms to understand virus-vector interactions and to exploit RNAi for pest control.


2019 ◽  
Author(s):  
Evan H. Lister-Shimauchi ◽  
Michael Dinh ◽  
Paul Maddox ◽  
Shawn Ahmed

SummaryTransgenerational Epigenetic Inheritance occurs when gametes transmit forms of information without altering genomic DNA1. Although deficiency for telomerase in human families causes transgenerational shortening of telomeres2, a role for telomeres in Transgenerational Epigenetic Inheritance is unknown. Here we show that Protection Of Telomeres 1 (Pot1) proteins, which interact with single-stranded telomeric DNA3,4, function in gametes to regulate developmental expression of telomeric foci for multiple generations. C. elegans POT-1 and POT-25,6 formed abundant telomeric foci in adult germ cells that vanished in 1-cell embryos and gradually accumulated during development. pot-2 mutants displayed abundant POT-1::mCherry foci throughout development. pot-2 mutant gametes created F1 cross-progeny with constitutively abundant POT-1::mCherry and mNeonGreen::POT-2 foci, which persisted for 6 generations but did not alter telomere length. pot-1 mutant and pot-2; pot-1 double mutant gametes gave rise to progeny with constitutively diminished Pot1 foci. Genomic silencing and small RNAs potentiate many transgenerational effects7 but did not affect Pot1 foci. We conclude that C. elegans POT-1 functions at telomeres of pot-2 mutant gametes to create constitutively high levels of Pot1 foci in future generations. As regulation of telomeres and Pot1 have been tied to cancer8,9, this novel and highly persistent form of Transgenerational Epigenetic Inheritance could be relevant to human health.


2020 ◽  
Vol 48 (3) ◽  
pp. 1019-1034 ◽  
Author(s):  
Rachel M. Woodhouse ◽  
Alyson Ashe

Gene regulatory information can be inherited between generations in a phenomenon termed transgenerational epigenetic inheritance (TEI). While examples of TEI in many animals accumulate, the nematode Caenorhabditis elegans has proven particularly useful in investigating the underlying molecular mechanisms of this phenomenon. In C. elegans and other animals, the modification of histone proteins has emerged as a potential carrier and effector of transgenerational epigenetic information. In this review, we explore the contribution of histone modifications to TEI in C. elegans. We describe the role of repressive histone marks, histone methyltransferases, and associated chromatin factors in heritable gene silencing, and discuss recent developments and unanswered questions in how these factors integrate with other known TEI mechanisms. We also review the transgenerational effects of the manipulation of histone modifications on germline health and longevity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenjing Qi ◽  
Erika D. V. Gromoff ◽  
Fan Xu ◽  
Qian Zhao ◽  
Wei Yang ◽  
...  

AbstractMulticellular organisms coordinate tissue specific responses to environmental information via both cell-autonomous and non-autonomous mechanisms. In addition to secreted ligands, recent reports implicated release of small RNAs in regulating gene expression across tissue boundaries. Here, we show that the conserved poly-U specific endoribonuclease ENDU-2 in C. elegans is secreted from the soma and taken-up by the germline to ensure germline immortality at elevated temperature. ENDU-2 binds to mature mRNAs and negatively regulates mRNA abundance both in the soma and the germline. While ENDU-2 promotes RNA decay in the soma directly via its endoribonuclease activity, ENDU-2 prevents misexpression of soma-specific genes in the germline and preserves germline immortality independent of its RNA-cleavage activity. In summary, our results suggest that the secreted RNase ENDU-2 regulates gene expression across tissue boundaries in response to temperature alterations and contributes to maintenance of stem cell immortality, probably via retaining a stem cell specific program of gene expression.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel Valente

AbstractImitating the transition from inanimate to living matter is a longstanding challenge. Artificial life has achieved computer programs that self-replicate, mutate, compete and evolve, but lacks self-organized hardwares akin to the self-assembly of the first living cells. Nonequilibrium thermodynamics has achieved lifelike self-organization in diverse physical systems, but has not yet met the open-ended evolution of living organisms. Here, I look for the emergence of an artificial-life code in a nonequilibrium physical system undergoing self-organization. I devise a toy model where the onset of self-replication of a quantum artificial organism (a chain of lambda systems) is owing to single-photon pulses added to a zero-temperature environment. I find that spontaneous mutations during self-replication are unavoidable in this model, due to rare but finite absorption of off-resonant photons. I also show that the replication probability is proportional to the absorbed work from the photon, thereby fulfilling a dissipative adaptation (a thermodynamic mechanism underlying lifelike self-organization). These results hint at self-replication as the scenario where dissipative adaptation (pointing towards convergence) coexists with open-ended evolution (pointing towards divergence).


2021 ◽  
Author(s):  
Jincheng Long ◽  
James Walker ◽  
Wenjing She ◽  
Billy Aldridge ◽  
Hongbo Gao ◽  
...  

AbstractThe plant male germline undergoes DNA methylation reprogramming, which methylates genes de novo and thereby alters gene expression and facilitates meiosis. Why reprogramming is limited to the germline and how specific genes are chosen is unknown. Here, we demonstrate that genic methylation in the male germline, from meiocytes to sperm, is established by germline-specific siRNAs transcribed from transposons with imperfect sequence homology. These siRNAs are synthesized by meiocyte nurse cells (tapetum) via activity of the tapetum-specific chromatin remodeler CLASSY3. Remarkably, tapetal siRNAs govern germline methylation throughout the genome, including the inherited methylation patterns in sperm. Finally, we demonstrate that these nurse cell-derived siRNAs (niRNAs) silence germline transposons, thereby safeguarding genome integrity. Our results reveal that tapetal niRNAs are sufficient to reconstitute germline methylation patterns and drive extensive, functional methylation reprogramming analogous to piRNA-mediated reprogramming in animal germlines.


2020 ◽  
Author(s):  
Miguel A. Casal ◽  
Santiago Galella ◽  
Oscar Vilarroya ◽  
Jordi Garcia-Ojalvo

Neuronal networks provide living organisms with the ability to process information. They are also characterized by abundant recurrent connections, which give rise to strong feed-back that dictates their dynamics and endows them with fading (short-term) memory. The role of recurrence in long-term memory, on the other hand, is still unclear. Here we use the neuronal network of the roundworm C. elegans to show that recurrent architectures in living organisms can exhibit long-term memory without relying on specific hard-wired modules. A genetic algorithm reveals that the experimentally observed dynamics of the worm’s neuronal network exhibits maximal complexity (as measured by permutation entropy). In that complex regime, the response of the system to repeated presentations of a time-varying stimulus reveals a consistent behavior that can be interpreted as soft-wired long-term memory.A common manifestation of our ability to remember the past is the consistence of our responses to repeated presentations of stimuli across time. Complex chaotic dynamics is known to produce such reliable responses in spite of its characteristic sensitive dependence on initial conditions. In neuronal networks, complex behavior is known to result from a combination of (i) recurrent connections and (ii) a balance between excitation and inhibition. Here we show that those features concur in the neuronal network of a living organism, namely C. elegans. This enables long-term memory to arise in an on-line manner, without having to be hard-wired in the brain.


2021 ◽  
Author(s):  
Adelheid Lempradl ◽  
Unn Kugelberg ◽  
Mary Iconomou ◽  
Ian Beddows ◽  
Daniel Nätt ◽  
...  

Preconception parental environment can reproducibly program offspring phenotype without altering the DNA sequence, yet the mechanisms underpinning this epigenetic inheritance remains elusive. Here, we demonstrate the existence of an intact piRNA-pathway in mature Drosophila sperm and show that pathway modulation alters offspring gene transcription in a sequence-specific manner. We map a dynamic small RNA content in developing sperm and find that the mature sperm carry a highly distinct small RNA cargo. By biochemical pulldown, we identify a small RNA subset bound directly to piwi protein. And, we show that piRNA-pathway controlled sperm small RNAs are linked to target gene repression in offspring. Critically, we find that full piRNA-pathway dosage is necessary for the intergenerational metabolic and transcriptional reprogramming events triggered by high paternal dietary sugar. These data provide a direct link between regulation of endogenous mature sperm small RNAs and transcriptional programming of complementary sequences in offspring. Thus, we identify a novel mediator of paternal intergenerational epigenetic inheritance.


Sign in / Sign up

Export Citation Format

Share Document