scholarly journals Ground Control Point Distribution for Accurate Kilometre-Scale Topographic Mapping Using an RTK-GNSS Unmanned Aerial Vehicle and SfM Photogrammetry

Drones ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 55 ◽  
Author(s):  
Eilidh Stott ◽  
Richard D. Williams ◽  
Trevor B. Hoey

Unmanned Aerial Vehicles (UAVs) have revolutionised the availability of high resolution topographic data in many disciplines due to their relatively low-cost and ease of deployment. Consumer-grade Real Time Kinematic Global Navigation Satellite System (RTK-GNSS) equipped UAVs offer potential to reduce or eliminate ground control points (GCPs) from SfM photogrammetry surveys, removing time-consuming target deployment. Despite this, the removal of ground control can substantially reduce the georeferencing accuracy of SfM photogrammetry outputs. Here, a DJI Phantom 4 RTK UAV is deployed to survey a 2 × 0.5 km reach of the braided River Feshie, Scotland that has local channel-bar relief of c.1 m and median grain size c.60 mm. Five rectangular adjacent blocks were flown, with images collected at 20° from the nadir across a double grid, with strips flown in opposing directions to achieve locally convergent imagery geometry. Check point errors for seven scenarios with varying configurations of GCPs were tested. Results show that, contrary to some published Direct Georeferencing UAV investigations, GCPs are not essential for accurate kilometre-scale topographic modelling. Using no GCPs, 3300 independent spatially-distributed RTK-GNSS surveyed check points have mean z-axis error −0.010 m (RMSE = 0.066 m). Using 5 GCPs gave 0.016 m (RMSE = 0.072 m). Our check point results do not show vertical systematic errors, such as doming, using either 0 or 5 GCPs. However, acquiring spatially distributed independent check points to check for systematic errors is recommended. Our results imply that an RTK-GNSS UAV can produce acceptable errors with no ground control, alongside spatially distributed independent check points, demonstrating that the technique is versatile for rapid kilometre-scale topographic survey in a range of geomorphic environments.

2021 ◽  
Author(s):  
Katherine Brodie ◽  
Brittany Bruder ◽  
Richard Slocum ◽  
Nicholas Spore

A low-cost multicamera Unmanned Aircraft System (UAS) is used to simultaneously estimate open-coast topography and bathymetry from a single longitudinal coastal flight. The UAS combines nadir and oblique imagery to create a wide field of view (FOV), which enables collection of mobile, long dwell timeseries of the littoral zone suitable for structure-from motion (SfM), and wave speed inversion algorithms. Resultant digital surface models (DSMs) compare well with terrestrial topographic lidar and bathymetric survey data at Duck, NC, USA, with root-mean-square error (RMSE)/bias of 0.26/–0.05 and 0.34/–0.05 m, respectively. Bathymetric data from another flight at Virginia Beach, VA, USA, demonstrates successful comparison (RMSE/bias of 0.17/0.06 m) in a secondary environment. UAS-derived engineering data products, total volume profiles and shoreline position, were congruent with those calculated from traditional topo-bathymetric surveys at Duck. Capturing both topography and bathymetry within a single flight, the presented multicamera system is more efficient than data acquisition with a single camera UAS; this advantage grows for longer stretches of coastline (10 km). Efficiency increases further with an on-board Global Navigation Satellite System–Inertial Navigation System (GNSS-INS) to eliminate ground control point (GCP) placement. The Appendix reprocesses the Virginia Beach flight with the GNSS–INS input and no GCPs.


Author(s):  
L. Teppati Losè ◽  
F. Chiabrando ◽  
F. Giulio Tonolo

Abstract. The estimate of External Orientation (E.O.) parameters for a block of images is a crucial step in the photogrammetric pipeline and the most demanding in terms of required time and human effort, both during the fieldwork and post-processing phases. Different researchers developed strategies to minimize the impact of this phase. Despite the achievement of good results, it was not possible until now to completely cancel the effect of this step. However, the efforts of the researchers in these years have also been devoted to the implementation of direct photogrammetry strategies, in order to almost completely automate the E.O. of the photogrammetric block. These new approaches were made possible also thanks to the latest developments of commercial UAVs, especially in terms of the installed GPS/GNSS (Global Positioning System/Global Navigation Satellite System) hardware. The aim of this manuscript is to evaluate the different perspectives and issues connected with the deployment of a UAV (Unmanned Aerial Vehicle) equipped with a multi-frequency GPS/GNSS receiver. Starting from the considerations mentioned above and leveraging previous works based on a fixed-wing platform, the focus of this contribution is the assessment of the real performances of an RTK multi-rotor platform addressing several questions. Is it possible to generate added-value products with centimetre 3D accuracies without measuring any ground control point? Which are the operational requirements to be taken into account in the planning phase? Are consolidated UAV mapping operational workflows already available to enable a robust direct georeferencing approach?


2018 ◽  
Vol 2 ◽  
pp. 535
Author(s):  
Maundri Prihanggo

<p>Saat ini, citra satelit resolusi sangat tinggi digunakan dalam berbagai macam aplikasi, terutama pemetaan skala besar. Sebelum dapat digunakan, citra satelit tersebut harus diorthorektifikasi terlebih dahulu. Data <em>Digital Surface Model </em>(DSM) dan <em>Ground Control Point</em> (GCP) adalah dua data utama yang diperlukan saat melakukan orthorektifikasi. Perbedaan data DSM yang digunakan akan menghasilkan perbedaan nilai ketelitian horizontal pada kedua citra tegak hasil orthorektifikasi. Pada penelitian ini digunakan dua jenis DSM yaitu SRTM dan Terrasar-X. Ketelitian vertikal dari SRTM adalah 90 m sedangkan ketelitian vertikal dari Terrasar-X adalah 12,5 m. Penelitian ini berlokasi di Wilayah Buli, Kabupaten Halmahera Timur, Provinsi Maluku. Terdapat tiga sensor citra satelit yang digunakan yaitu Pleiades, Quickbird dan Worldview-2 yang digunakan pada lokasi penelitian. Total GCP yang digunakan adalah 33 titik, tiap titiknya diukur dengan melakukan pengamatan geodetik dan memiliki ketelitian horizontal ≤15 cm dan ketelitian vertikal ≤30 cm. Ketelitian horizontal dari citra tegak satelit resolusi sangat tinggi diperoleh dengan melakukan uji terhadap Independent Check Point (ICP). Total ICP yang digunakan adalah 12 titik, tiap titik ICP diukur dengan metode dan standar yang sama dengan titik GCP. Ketelitian horizontal dengan Circular Error (CE 90) dari citra tegak satelit menggunakan data SRTM adalah 18,856 m sedangkan ketelitian horizontal dengan Circular Error (CE 90) dari citra tegak satelit menggunakan data Terrasar-X adalah 2.168 m . Hasil dari penelitian ini membuktikan bahwa ketelitian vertikal data DSM yang digunakan memberikan pengaruh pada citra tegak satelit hasil orthorektifikasi tersebut. Mengacu pada Peraturan Kepala BIG nomor 15 tahun 2014, citra tegak satelit hasil orthorektifikasi menggunakan data Terrasar-X sebagai DSM memenuhi ketelitian horizontal peta dasar kelas 3 skala 1:5.000 sedangkan citra tegak satelit hasil orthorektifikasi menggunakan data SRTM sebagai DSM tidak dapat memenuhi ketelitian horizontal peta dasar skala besar.</p><p><strong>Kata kunci:</strong> orthorektifikasi, DSM, ketelitian horizontal</p>


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2594
Author(s):  
Aiden Morrison ◽  
Nadezda Sokolova ◽  
James Curran

This paper investigates the challenges of developing a multi-frequency radio frequency interference (RFI) monitoring and characterization system that is optimized for ease of deployment and operation as well as low per unit cost. To achieve this, we explore the design and development of a multiband global navigation satellite system (GNSS) front-end which is intrinsically capable of synchronizing side channel information from non-RF sensors, such as inertial measurement units and integrated power meters, to allow the simultaneous production of substantial amounts of sampled spectrum while also allowing low-cost, real-time monitoring and logging of detected RFI events. While the inertial measurement unit and barometer are not used in the RFI investigation discussed, the design features that provide for their precise synchronization with the RF sample stream are presented as design elements worth consideration. The designed system, referred to as Four Independent Tuners with Data-packing (FITWD), was utilized in a data collection campaign over multiple European and Scandinavian countries in support of the determination of the relative occurrence rates of L1/E1 and L5/E5a interference events and intensities where it proved itself a successful alternative to larger and more expensive commercial solutions. The dual conclusions reached were that it was possible to develop a compact low-cost, multi-channel radio frequency (RF) front-end that implicitly supported external data source synchronization, and that such monitoring systems or similar capabilities integrated within receivers are likely to be needed in the future due to the increasing occurrence rates of GNSS RFI events.


2019 ◽  
Vol 54 (3) ◽  
pp. 97-112
Author(s):  
Mostafa Hamed ◽  
Ashraf Abdallah ◽  
Ashraf Farah

Abstract Nowadays, Precise Point Positioning (PPP) is a very popular technique for Global Navigation Satellite System (GNSS) positioning. The advantage of PPP is its low cost as well as no distance limitation when compared with the differential technique. Single-frequency receivers have the advantage of cost effectiveness when compared with the expensive dual-frequency receivers, but the ionosphere error makes a difficulty to be completely mitigated. This research aims to assess the effect of using observations from both GPS and GLONASS constellations in comparison with GPS only for kinematic purposes using single-frequency observations. Six days of the year 2018 with single-frequency data for the Ethiopian IGS station named “ADIS” were processed epoch by epoch for 24 hours once with GPS-only observations and another with GPS/GLONASS observations. In addition to “ADIS” station, a kinematic track in the New Aswan City, Aswan, Egypt, has been observed using Leica GS15, geodetic type, dual-frequency, GPS/GLONASS GNSS receiver and single-frequency data have been processed. Net_Diff software was used for processing all the data. The results have been compared with a reference solution. Adding GLONASS satellites significantly improved the satellite number and Position Dilution Of Precision (PDOP) value and accordingly improved the accuracy of positioning. In the case of “ADIS” data, the 3D Root Mean Square Error (RMSE) ranged between 0.273 and 0.816 m for GPS only and improved to a range from 0.256 to 0.550 m for GPS/GLONASS for the 6 processed days. An average improvement ratio of 24%, 29%, 30%, and 29% in the east, north, height, and 3D position components, respectively, was achieved. For the kinematic trajectory, the 3D position RMSE improved from 0.733 m for GPS only to 0.638 m for GPS/GLONASS. The improvement ratios were 7%, 5%, 28%, and 13% in the east, north, height, and 3D position components, respectively, for the kinematic trajectory data. This opens the way to add observations from the other two constellations (Galileo and BeiDou) for more accuracy in future research.


2017 ◽  
Vol 11 (2) ◽  
pp. 827-840 ◽  
Author(s):  
Luc Girod ◽  
Christopher Nuth ◽  
Andreas Kääb ◽  
Bernd Etzelmüller ◽  
Jack Kohler

Abstract. Acquiring data to analyse change in topography is often a costly endeavour requiring either extensive, potentially risky, fieldwork and/or expensive equipment or commercial data. Bringing the cost down while keeping the precision and accuracy has been a focus in geoscience in recent years. Structure from motion (SfM) photogrammetric techniques are emerging as powerful tools for surveying, with modern algorithm and large computing power allowing for the production of accurate and detailed data from low-cost, informal surveys. The high spatial and temporal resolution permits the monitoring of geomorphological features undergoing relatively rapid change, such as glaciers, moraines, or landslides. We present a method that takes advantage of light-transport flights conducting other missions to opportunistically collect imagery for geomorphological analysis. We test and validate an approach in which we attach a consumer-grade camera and a simple code-based Global Navigation Satellite System (GNSS) receiver to a helicopter to collect data when the flight path covers an area of interest. Our method is based and builds upon Welty et al. (2013), showing the ability to link GNSS data to images without a complex physical or electronic link, even with imprecise camera clocks and irregular time lapses. As a proof of concept, we conducted two test surveys, in September 2014 and 2015, over the glacier Midtre Lovénbreen and its forefield, in northwestern Svalbard. We were able to derive elevation change estimates comparable to in situ mass balance stake measurements. The accuracy and precision of our DEMs allow detection and analysis of a number of processes in the proglacial area, including the presence of thermokarst and the evolution of water channels.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 465 ◽  
Author(s):  
Krzysztof Marcinek ◽  
Witold A. Pleskacz

This work presents the results of research toward designing an instruction set extension dedicated to Global Navigation Satellite System (GNSS) baseband processing. The paper describes the state-of-the-art techniques of GNSS receiver implementation. Their advantages and disadvantages are discussed. Against this background, a new versatile instruction set extension for GNSS baseband processing is presented. The authors introduce improved mechanisms for instruction set generation focused on multi-channel processing. The analytical approach used by the authors leads to the introduction of a GNSS-instruction set extension (ISE) for GNSS baseband processing. The developed GNSS-ISE is simulated extensively using PC software and field-programmable gate array (FPGA) emulation. Finally, the developed GNSS-ISE is incorporated into the first-in-the-world, according to the authors’ best knowledge, integrated, multi-frequency, and multi-constellation microcontroller with embedded flash memory. Additionally, this microcontroller may serve as an application processor, which is a unique feature. The presented results show the feasibility of implementing the GNSS-ISE into an embedded microprocessor system and its capability of performing baseband processing. The developed GNSS-ISE can be implemented in a wide range of applications including smart IoT (internet of things) devices or remote sensors, fostering the adaptation of multi-frequency and multi-constellation GNSS receivers to the low-cost consumer mass-market.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4375
Author(s):  
Veton Hamza ◽  
Bojan Stopar ◽  
Tomaž Ambrožič ◽  
Goran Turk ◽  
Oskar Sterle

Global Navigation Satellite System (GNSS) technology is widely used for geodetic monitoring purposes. However, in cases where a higher risk of receiver damage is expected, geodetic GNSS receivers may be considered too expensive to be used. As an alternative, low-cost GNSS receivers that are cheap, light, and prove to be of adequate quality over short baselines, are considered. The main goal of this research is to evaluate the positional precision of a multi-frequency low-cost instrument, namely, ZED-F9P with u-blox ANN-MB-00 antenna, and to investigate its potential for displacement detection. We determined the positional precision within static survey, and the displacement detection within dynamic survey. In both cases, two baselines were set, with the same rover point equipped with a low-cost GNSS instrument. The base point of the first baseline was observed with a geodetic GNSS instrument, whereas the second baseline was observed with a low-cost GNSS instrument. The results from static survey for both baselines showed comparable results for horizontal components; the precision was on a level of 2 mm or better. For the height component, the results show a better performance of low-cost instruments. This may be a consequence of unknown antenna calibration parameters for low-cost GNSS antenna, while statistically significant coordinates of rover points were obtained from both baselines. The difference was again more significant in the height component. For the displacement detection, a device was used that imposes controlled movements with sub-millimeter accuracy. Results, obtained on a basis of 30-min sessions, show that low-cost GNSS instruments can detect displacements from 10 mm upwards with a high level of reliability. On the other hand, low-cost instruments performed slightly worse as far as accuracy is concerned.


2020 ◽  
Vol 12 (5) ◽  
pp. 747
Author(s):  
Peng Zhang ◽  
Yinzhi Zhao ◽  
Huan Lin ◽  
Jingui Zou ◽  
Xinzhe Wang ◽  
...  

The global navigation satellite system (GNSS)-based attitude determination system has attracted more and more attention with the advantages of having simplified algorithms, a low price and errors that do not accumulate over time. However, GNSS signals may have poor quality or lose lock in some epochs with the influence of signal fading and the multipath effect. When the direct attitude determination method is applied, the primary baseline may not be available (ambiguity is not fixed), leading to the inability of attitude determination. With the gradual popularization of low-cost receivers, making full use of spatial redundancy information of multiple antennas brings new ideas to the GNSS-based attitude determination method. In this paper, an attitude angle conversion algorithm, selecting an arbitrary baseline as the primary baseline, is derived. A multi-antenna attitude determination method based on primary baseline switching is proposed, which is performed on a self-designed embedded software and hardware platform. The proposed method can increase the valid epoch proportion and attitude information. In the land vehicle test, reference results output from a high-accuracy integrated navigation system were used to evaluate the accuracy and reliability. The results indicate that the proposed method is correct and feasible. The valid epoch proportion is increased by 16.2%, which can effectively improve the availability of attitude determination. The RMS of the heading, pitch and roll angles are 0.52°, 1.25° and 1.16°.


Sign in / Sign up

Export Citation Format

Share Document