scholarly journals The Effect of EMI Generated from Spread-Spectrum-Modulated SiC-Based Buck Converter on the G3-PLC Channel

Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1416
Author(s):  
Waseem El Sayed ◽  
Piotr Lezynski ◽  
Robert Smolenski ◽  
Niek Moonen ◽  
Paolo Crovetti ◽  
...  

Power line communication (PLC) is increasingly emerging as an important communication technology for the smart-grid environment. As PLC systems use the existing infrastructure, they are always exposed to conducted electromagnetic interference (EMI) from switching mode power converters, which need to be tightly controlled to meet EMC regulations and to ensure the proper operation of the PLC system. For this purpose, spread-spectrum modulation (SSM) techniques are widely adopted to decrease the amplitude of the generated EMI from the power converters so as to comply with EMC regulations. In this paper, the influence of a spread-spectrum-modulated SiC-based buck converter on the G3-PLC channel performance is described in terms of channel capacity reduction using the Shannon–Hartley equation. The experimental setup was implemented to emulate a specific coupling path between the power and communication circuits and the channel capacity reduction was evaluated by the Shannon–Hartley equation in several operating scenarios and compared with the measured frame error rate. Based on the obtained results, SSM provides the EMI spectral peak amplitude reduction required to pass the electromagnetic compatibility (EMC) tests, but results in increased EMI-induced channel capacity degradation and increased transmission error rate in PLC systems.

Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 856
Author(s):  
Jing-Yuan Lin ◽  
Yi-Chieh Hsu ◽  
Yo-Da Lin

In this paper, a triangular spread-spectrum mechanism is proposed to suppress the electromagnetic interference (EMI) of a DC-DC buck converter. The proposed triangular spread-spectrum mechanism, which is implemented in the chip, can avoid modifying the printed circuit board of switching regulators. In addition, a lower ripple of output voltage of switching regulators and a better system stability can be realized by the inductive DC resistance (DCR) current sensing circuit. The chip is fabricated by using TSMC 0.18-μm 1P6M CMOS technology. The chip area including PADs is 1.2 × 1.15 mm2. The input voltage range is 2.7~3.3 V and the output voltage is 1.8 V. The maximum load current is 700 mA. The off-chip inductor and capacitor are 3.3 μH and 10 μF, respectively. The experimental results demonstrate that the maximum spur of the proposed DC-DC buck converter with the triangular spread-spectrum mechanism improves to 14dBm. Moreover, the transient recovery time of step-up and step-down loads are both 5 μs. The measured maximum efficiency is 94% when the load current is 200 mA.


2016 ◽  
Vol 64 (3) ◽  
pp. 575-580 ◽  
Author(s):  
J. Bojarski ◽  
R. Smolenski ◽  
P. Lezynski ◽  
Z. Sadowski

AbstractThe assurance of the electromagnetic compatibility of sensitive smart metering systems and power electronic converters, which introduce high-level electromagnetic interference is important factor conditioning reliable operation of up to date power systems. Presented experimental results have shown that currently binding, frequency domain tests are ineffective for the evaluation of data transmission error hazards. The proposed in this paper mathematical, time-domain model, based on Diophantine equation, enables evaluation of data transmission errors caused by interference introduced by DC-DC power electronic interfaces with deterministic modulation. In the paper there have been presented possible application areas for the proposed model.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2979
Author(s):  
Abduselam Hamid Beshir ◽  
Lu Wan ◽  
Flavia Grassi ◽  
Paolo Stefano Crovetti ◽  
Xiaokang Liu ◽  
...  

Random Pulse Width Modulation (RPWM) allows controlling the switching signal of power converters in order to reduce the harmonic peaks by spreading the noise spectrum. Currently, many manufacturers of power converters are deploying this modulation scheme in order to comply with Electromagnetic Compatibility (EMC) test requirements. However, when the converters coexist with Power Line Communication (PLC) systems, such as in Smart Grid (SG) applications, resorting to RPWM needs further investigations since it potentially affects the communication channel by increasing the bit error rate. This possible detrimental effect is investigated in this work, by considering a PLC system for automatic meter reading (AMR) implemented in a SG application. To this end, the model of a complete PLC system is implemented in SIMULINK, and Quadrature Phase Shift Keying (QPSK) modulation is used to model the PLC modems in the communication channel. Results show that, even if the deployment of RPWM techniques may lead to an appreciable reduction/spreading of the peaks in the noise spectrum, it may also lead to an increase of the bit error rate on the PLC system.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 777
Author(s):  
Jan Leuchter ◽  
Radim Bloudicek ◽  
Jan Boril ◽  
Josef Bajer ◽  
Erik Blasch

The paper describes the influence of power electronics, energy processing, and emergency radio systems (ERS) immunity testing on onboard aircraft equipment and ground stations providing air traffic services. The implementation of next-generation power electronics introduces potential hazards for the safety and reliability of aircraft systems, especially the interferences from power electronics with high-power processing. The paper focuses on clearly identifying, experimentally verifying, and quantifiably measuring the effects of power electronics processing using switching modes versus the electromagnetic compatibility (EMC) of emergency radio systems with electromagnetic interference (EMI). EMI can be very critical when switching power radios utilize backup receivers, which are used as aircraft backup systems or airport last-resort systems. The switching power electronics process produces interfering electromagnetic energy to create problems with onboard aircraft radios or instrument landing system (ILS) avionics services. Analyses demonstrate significant threats and risks resulting from interferences between radio and power electronics in airborne systems. Results demonstrate the impact of interferences on intermediate-frequency processing, namely, for very high frequency (VHF) radios. The paper also describes the methodology of testing radio immunity against both weak and strong signals in accordance with recent aviation standards and guidance for military radio communication systems in the VHF band.


2021 ◽  
Vol 4 (3) ◽  
pp. 50
Author(s):  
Preeti Warrier ◽  
Pritesh Shah

The control of power converters is difficult due to their non-linear nature and, hence, the quest for smart and efficient controllers is continuous and ongoing. Fractional-order controllers have demonstrated superior performance in power electronic systems in recent years. However, it is a challenge to attain optimal parameters of the fractional-order controller for such types of systems. This article describes the optimal design of a fractional order PID (FOPID) controller for a buck converter using the cohort intelligence (CI) optimization approach. The CI is an artificial intelligence-based socio-inspired meta-heuristic algorithm, which has been inspired by the behavior of a group of candidates called a cohort. The FOPID controller parameters are designed for the minimization of various performance indices, with more emphasis on the integral squared error (ISE) performance index. The FOPID controller shows faster transient and dynamic response characteristics in comparison to the conventional PID controller. Comparison of the proposed method with different optimization techniques like the GA, PSO, ABC, and SA shows good results in lesser computational time. Hence the CI method can be effectively used for the optimal tuning of FOPID controllers, as it gives comparable results to other optimization algorithms at a much faster rate. Such controllers can be optimized for multiple objectives and used in the control of various power converters giving rise to more efficient systems catering to the Industry 4.0 standards.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Abubakar Yakubu ◽  
Zulkifly Abbas ◽  
Nor Azowa Ibrahim ◽  
Ahmad Fahad

In industrial equipment and home appliance applications, the electromagnetic compatibility compliance directive (ECCD) demands that electromagnetic interference side effects be eliminated or marginally minimized. The equipment must not disturb radio and telecommunication as well as other appliances. Additionally the ECCD also governs the immunity of such equipment to interference and seeks to ensure that this equipment is not disturbed by radio emissions when used as intended. Many types of absorbing materials are commercially available. However, many are expensive and not environmentally friendly. It is in the light of the above that we studied the electromagnetic absorption properties of ZnO-PCL nanocomposites prepared from cheap and abundant resources which are environmentally friendly (zinc and polycaprolactone). The test was carried out using a microstrip, open ended coaxial probe, and vector network analyzer. Amongst other findings, result showed that the ZnO-PCL nanocomposite has the capability of attenuating microwave frequency up to −18.2 dB due to their very high specific surface areas attributed to the nanofillers at 12 GHz.


Sign in / Sign up

Export Citation Format

Share Document