scholarly journals A Sub-6G SP32T Single-Chip Switch with Nanosecond Switching Speed for 5G Applications in 0.25 μm GaAs Technology

Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1482
Author(s):  
Tianxiang Wu ◽  
Jipeng Wei ◽  
Hongquan Liu ◽  
Shunli Ma ◽  
Yong Chen ◽  
...  

This paper presents a single-pole 32-throw (SP32T) switch with an operating frequency of up to 6 GHz for 5G communication applications. Compared to the traditional SP32T module implemented by the waveguide package with large volume and power, the proposed switch can significantly simplify the system with a smaller size and light weight. The proposed SP32T scheme utilizing tree structure can dramatically reduce the dc power and enhance isolation between different output ports, which makes it suitable for low-power 5G communication. A design methodology of a novel transmission (ABCD) matrix is proposed to optimize the switch, which can achieve low insertion loss and high isolation simultaneously. The average insertion loss and the isolations are 1.5 and 35 dB at 6 GHz operating frequency, respectively. The switch exhibits the measured input return loss which is better than 10 dB at 6 GHz. The 1 dB input compression point of SP32T is 15 dBm. The prototype is designed in 5 V 0.25 μm GaAs technology and occupies a small area of 12 mm2.

2019 ◽  
Vol 12 (2) ◽  
pp. 116-119
Author(s):  
F. Parment ◽  
A. Ghiotto ◽  
T.-P. Vuong ◽  
L. Carpentier ◽  
K. Wu

AbstractA compact transition between conductor-backed coplanar waveguide (CBCPW) and substrate integrated suspended line (SISL) is presented. Compared to the reported transitions from CBCPW to SISL, performance and compactness are improved. For demonstration purpose, a multilayer transition is designed and fabricated for operation up to 46 GHz. Experimental results, based on an electronic calibration and thru–reflect–line calibration allowing measurement in the 0.01–50 GHz frequency range, demonstrate an insertion loss of 0.59 ± 0.51 dB with a return loss of better than 10 dB in the 10 MHz to 46 GHz frequency range.


2015 ◽  
Vol 8 (2) ◽  
pp. 185-191 ◽  
Author(s):  
Teng Li ◽  
Wenbin Dou

In this paper, a novel wideband right-angle transition between thin substrate integrated waveguide (SIW) and rectangular waveguide (RWG) based on multi-section structure operating at center frequency 31.5 GHz is presented. A multi-section SIW with a rectangular aperture etched on the broad wall and two stepped ridges embedded in the RWG flange are introduced to obtain a wide impedance matching. The simulations show that the bandwidth with return loss better than 20 dB is about 17 GHz. In order to verify our designs, two back-to-back transitions with different lengths are fabricated and measured. The experimental results agree well with simulations. The proposed component shows an insertion loss less than 0.44 dB and a return loss better than 14.5 dB over 12.15 GH, which corresponds to 38.57% bandwidth.


2013 ◽  
Vol 385-386 ◽  
pp. 1292-1295
Author(s):  
Xu Han ◽  
Jian Hua Xu

A planar power divider operating over the whole Ku-band is presented. The proposed device utilizes a T-microstrip junction combined with defected ground structure and an elliptical patch at the centre of the T-junction. An isolation resistor is connected across the slotted ground plane. The simulated results of the divider show equal power split, insertion loss is less than 0.3dB, return loss of all ports are better than 15dB, and isolation is better than 15dB over the whole Ku-band.


2014 ◽  
Vol 668-669 ◽  
pp. 799-802
Author(s):  
Hai Yan Jin ◽  
Teng Yue

The paper presents a design of rectangular waveguide-SIW transition, which provides a broadband and low insertion loss performance. The broadband transition is realized by using double-rhombus antenna probe inserted into rectangular metal waveguide. The transition is simulated and measured at 9-20GHz. The measured results show that a good agreement with simulation and an insertion loss less than 2.8 dB and a return loss better than 10 dB are obtained at 10–18.5 GHz for a back-to-back structure.


2018 ◽  
Vol 7 (3.4) ◽  
pp. 96 ◽  
Author(s):  
Yaqeen S. Mezaal ◽  
Seham A. Hashim ◽  
Aqeel H.Al-fatlawi ◽  
Hussein A. Hussein

In this study, dual-channel diplexer using microstrip open loop coupled resonators has been designed and simulated; each channel has two operating band frequencies. This microstrip diplexer is designed for (1.424/1.732GHz) for first channel and (2.014/2.318GHz) for second channel. The simulated results for this device have insertion loss (1.8 and 1 dB) at load 1, and (1.5 and 3 dB) at load 2. Additionally, it has reasonable return loss magnitudes better than 10 dB and effective isolation between channels of35 dB. The proposed design has shown an uncomplicated topology, an effectual design method, small circuit size and narrowband frequency responses that are fitting for multi service wireless schemes.  


2020 ◽  
Vol 12 (8) ◽  
pp. 749-753
Author(s):  
Song Guo ◽  
Kaijun Song ◽  
Yong Fan

AbstractA four-way suspended-stripline power divider is presented in this letter. The power dividing network is designed by using the suspended stripline, while the isolation network is designed by using the microstrip line. The vias are used to connect the power dividing network and the isolation network. The even- and odd-mode analysis method is applied to design the presented power divider. The simulated and measured results of the presented power divider show reasonable agreement with each other. The measured input return loss in the band is greater than 28 dB (7.92 to 9.53 GHz), while the measured insertion loss is less than 0.37 dB. The measured output return loss is greater than 20 dB from 7.82 to 9.86 GHz. Besides, the measured output isolation is greater than 20 dB.


2018 ◽  
Vol 32 (30) ◽  
pp. 1850362
Author(s):  
Lei Han ◽  
Shen Xiao

In this paper, design, fabrication and measurements of a novel single-pole-double-throw three-state RF MEMS switch based on silicon substrate are presented. The RF MEMS switch consists of two UV-shaped beam push–pull thermal actuators which have three states of ON, OFF and Deep-OFF by using current actuation. When the switch is at Deep-OFF state, it can provide a higher isolation. The switch is fabricated by MetalMUMPs process. The measurement results show that, to the proposed single-pole-double-throw RF MEMS switch, when Switch I is at the ON state and Switch II is at the OFF state, the return loss is better than −16 dB, the insertion loss of Port1 and Port2 is less than −0.9 dB and the isolation of Port3 and Port1 is better than −22 dB at the frequency range from 8 GHz to 12 GHz. When Switch I is at the ON state and the actuator of Switch II is pulled back, which is called the Deep-OFF state, the return loss of Port1 is better than −15.5 dB, the insertion loss of Port1 and Port2 is better than −0.8 dB, and the isolation of Port3 and Port1 is better than −23.5 dB can be achieved at the frequency range from 8 GHz to 12 GHz.


Frequenz ◽  
2012 ◽  
Vol 66 (7-8) ◽  
Author(s):  
Jun Zhou ◽  
Wei Shi ◽  
Wen-Bin Dou ◽  
Ya Shen

AbstractA kind of three dimensional Low Temperature Co-fired Ceramic (LTCC)-System in Package (SIP) transition was proposed in this paper. The basic design of SIP with LTCC technology was done by vertical transitions which transmit the microwave signal from the bottom to the surface of the substrate. The measured insertion loss did not exceed 1.5 dB, which contains the insertion loss of the test board about 0.6 dB at 18 GHz and the return loss was better than


Author(s):  
Siti Aminah Nordin ◽  
Mohd Khairul Mohd Salleh ◽  
Zuhani Ismail Khan ◽  
Norfishah Ab Wahab ◽  
Latifah Noh ◽  
...  

A novel substrate integrated waveguide (SIW) circular cavity using triangle probe are proposed in this paper. Prior to this research work, circular cavity resonator was used to achieve a miniaturization for the overall circuit size. The proposed filter provides single resonant mode, TE110. The resonant frequency of TE110 can be adjusted by varying the length and width of the SIW cavity. The proposed filter are designed to operate at frequency 3.75 GHz and implemented on Rogers 3210 substrate with thickness of 0.64 mm. The insertion loss in operating band is less than 0.6 dB and the return loss is better than 24 dB. Simulated result obtained using Ansoft HFSS software.


2016 ◽  
Vol 9 (3) ◽  
pp. 499-504 ◽  
Author(s):  
Mohsen Hayati ◽  
Mehrnaz Khodadoost ◽  
Hamed Abbasi

In this paper, a microstrip lowpass filter with wide stopband and sharp roll-off is presented. The proposed filter consists of a modified radial stub resonator which is cascaded by four suppressing cells. To reduce the overall size, the transmission lines are folded. The cut-off frequency of the proposed filter is 1.19 GHz. The transition band is approximately 0.2 GHz from 1.19 to 1.39 GHz with corresponding attenuation levels of 3–20 dB. The stopband is from 1.39 to 19 GHz with attenuation level of <20 dB. The insertion loss and return loss in the passband from DC to 0.8 GHz are better than 0.26 and 14 dB, respectively. The proposed filter is fabricated and measured. The simulated and measured results are in good agreement.


Sign in / Sign up

Export Citation Format

Share Document