scholarly journals Generative Adversarial Networks for Anonymized Healthcare of Lung Cancer Patients

Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2220
Author(s):  
Luis Gonzalez-Abril ◽  
Cecilio Angulo ◽  
Juan-Antonio Ortega ◽  
José-Luis Lopez-Guerra

The digital twin in health care is the dynamic digital representation of the patient’s anatomy and physiology through computational models which are continuously updated from clinical data. Furthermore, used in combination with machine learning technologies, it should help doctors in therapeutic path and in minimally invasive intervention procedures. Confidentiality of medical records is a very delicate issue, therefore some anonymization process is mandatory in order to maintain patients privacy. Moreover, data availability is very limited in some health domains like lung cancer treatment. Hence, generation of synthetic data conformed to real data would solve this issue. In this paper, the use of generative adversarial networks (GAN) for the generation of synthetic data of lung cancer patients is introduced as a tool to solve this problem in the form of anonymized synthetic patients. Generated synthetic patients are validated using both statistical methods, as well as by oncologists using the indirect mortality rate obtained for patients in different stages.

2021 ◽  
Author(s):  
Muhammad Haris Naveed ◽  
Umair Hashmi ◽  
Nayab Tajved ◽  
Neha Sultan ◽  
Ali Imran

This paper explores whether Generative Adversarial Networks (GANs) can produce realistic network load data that can be utilized to train machine learning models in lieu of real data. In this regard, we evaluate the performance of three recent GAN architectures on the Telecom Italia data set across a set of qualitative and quantitative metrics. Our results show that GAN generated synthetic data is indeed similar to real data and forecasting models trained on this data achieve similar performance to those trained on real data.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260308
Author(s):  
Mauro Castelli ◽  
Luca Manzoni ◽  
Tatiane Espindola ◽  
Aleš Popovič ◽  
Andrea De Lorenzo

Wireless networks are among the fundamental technologies used to connect people. Considering the constant advancements in the field, telecommunication operators must guarantee a high-quality service to keep their customer portfolio. To ensure this high-quality service, it is common to establish partnerships with specialized technology companies that deliver software services in order to monitor the networks and identify faults and respective solutions. A common barrier faced by these specialized companies is the lack of data to develop and test their products. This paper investigates the use of generative adversarial networks (GANs), which are state-of-the-art generative models, for generating synthetic telecommunication data related to Wi-Fi signal quality. We developed, trained, and compared two of the most used GAN architectures: the Vanilla GAN and the Wasserstein GAN (WGAN). Both models presented satisfactory results and were able to generate synthetic data similar to the real ones. In particular, the distribution of the synthetic data overlaps the distribution of the real data for all of the considered features. Moreover, the considered generative models can reproduce the same associations observed for the synthetic features. We chose the WGAN as the final model, but both models are suitable for addressing the problem at hand.


2021 ◽  
Author(s):  
Muhammad Haris Naveed ◽  
Umair Hashmi ◽  
Nayab Tajved ◽  
Neha Sultan ◽  
Ali Imran

This paper explores whether Generative Adversarial Networks (GANs) can produce realistic network load data that can be utilized to train machine learning models in lieu of real data. In this regard, we evaluate the performance of three recent GAN architectures on the Telecom Italia data set across a set of qualitative and quantitative metrics. Our results show that GAN generated synthetic data is indeed similar to real data and forecasting models trained on this data achieve similar performance to those trained on real data.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vajira Thambawita ◽  
Jonas L. Isaksen ◽  
Steven A. Hicks ◽  
Jonas Ghouse ◽  
Gustav Ahlberg ◽  
...  

AbstractRecent global developments underscore the prominent role big data have in modern medical science. But privacy issues constitute a prevalent problem for collecting and sharing data between researchers. However, synthetic data generated to represent real data carrying similar information and distribution may alleviate the privacy issue. In this study, we present generative adversarial networks (GANs) capable of generating realistic synthetic DeepFake 10-s 12-lead electrocardiograms (ECGs). We have developed and compared two methods, named WaveGAN* and Pulse2Pulse. We trained the GANs with 7,233 real normal ECGs to produce 121,977 DeepFake normal ECGs. By verifying the ECGs using a commercial ECG interpretation program (MUSE 12SL, GE Healthcare), we demonstrate that the Pulse2Pulse GAN was superior to the WaveGAN* to produce realistic ECGs. ECG intervals and amplitudes were similar between the DeepFake and real ECGs. Although these synthetic ECGs mimic the dataset used for creation, the ECGs are not linked to any individuals and may thus be used freely. The synthetic dataset will be available as open access for researchers at OSF.io and the DeepFake generator available at the Python Package Index (PyPI) for generating synthetic ECGs. In conclusion, we were able to generate realistic synthetic ECGs using generative adversarial neural networks on normal ECGs from two population studies, thereby addressing the relevant privacy issues in medical datasets.


2009 ◽  
Author(s):  
Jameson K. Hirsch ◽  
Heidi Mason ◽  
Paul R. Duberstein

2004 ◽  
Vol 66 (6) ◽  
pp. 602-607 ◽  
Author(s):  
Miho UCHIHIRA ◽  
Takahiro EJIMA ◽  
Takao UCHIHIRA ◽  
Jun ARAKI ◽  
Toshiaki KAMEI

Sign in / Sign up

Export Citation Format

Share Document