scholarly journals A Wavelet-Based Diagnostic Framework for CRD Engine Injection Systems under Emulsified Fuel Conditions

Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2922
Author(s):  
Ugochukwu Ejike Akpudo ◽  
Jang-Wook Hur

The impact of the constituent oxides of nitrogen, carbon, sulphur, and other particulate matter which make up the gas emissions from diesel engines has motivated several control techniques for these pollutants. Water-in-diesel emulsions provide a reliable solution, but the wear effects on the fuel injection system (FIS) still pose remarkable concerns. Because pressure signals from the common rail (CR) reflect the dynamics associated with varying emulsion compositions and at varying engine RPMs, an investigative (and diagnostic) study was conducted on a KIA Sorento 2004 four-cylinder line engine at various water-in-diesel emulsion compositions and engine speeds. Alongside visual/microscopic inspections and spectral analyses, the diagnostic framework proposed herein functions on the use of standardized first-order differentials of the CR pressure signals to generate reliable continuous wavelet coefficients (CWCs) which capture discriminative spectral and transient information for accurate diagnosis. The results show that by extracting the CWCs from the first-order CR pressure differentials up to the 512th scale on a Mexican hat wavelet, adequate fault parameters can be extracted for use by a deep neural network (DNN) whose hyperparameters were globally optimized following a grid search. With a test accuracy of 92.3% against other widely-used ML-based diagnostic tools, the proposed DNN-based diagnostics tool was empirically assessed using several performance evaluation metrics.

Author(s):  
Hongsheng Guo ◽  
W. Stuart Neill ◽  
Wally Chippior ◽  
Hailin Li ◽  
Joshua D. Taylor

Homogeneous charge compression ignition (HCCI) is an advanced low-temperature combustion technology being considered for internal combustion engines due to its potential for high fuel conversion efficiency and extremely low emissions of particulate matter and oxides of nitrogen (NOx). In its simplest form, HCCI combustion involves the auto-ignition of a homogeneous mixture of fuel, air, and diluents at low to moderate temperatures and high pressure. Previous research has indicated that fuel chemistry has a strong impact on HCCI combustion. This paper reports the preliminary results of an experimental and modeling study of HCCI combustion using n-heptane, a volatile hydrocarbon with well known fuel chemistry. A Co-operative Fuel Research (CFR) engine was modified by the addition of a port fuel injection system to produce a homogeneous fuel-air mixture in the intake manifold, which contributed to a stable and repeatable HCCI combustion process. Detailed experiments were performed to explore the effects of critical engine parameters such as intake temperature, compression ratio, air/fuel ratio, engine speed, turbocharging, and intake mixture throttling on HCCI combustion. The influence of these parameters on the phasing of the low-temperature reaction, main combustion stage, and negative temperature coefficient delay period are presented and discussed. A single-zone numerical simulation with detailed fuel chemistry was developed and validated. The simulations show good agreement with the experimental data and capture important combustion phase trends as engine parameters are varied.


2019 ◽  
Vol 26 (2) ◽  
pp. 181-188
Author(s):  
Kazimierz Witkowski ◽  
Jacek Wysocki

Abstract The article discusses one of the most popular methods of diagnosing selected damages of marine piston engines, which is the indication or measurement of pressure changes in the engine’s combustion chamber. Improving the quality of indicator diagrams may contribute to the increase in the efficiency of using the parameters indicated in the diagnostics of marine piston engines. Measurement errors during engine indication are primarily caused by measuring channels that connect the combustion chamber to the pressure sensor. One way to avoid these errors is to install the pressure sensor directly in the combustion chamber. It seems that it is possible to eliminate these errors. However, there is a risk that the pressure sensor will be damaged by the effect of high temperature on it during combustion of the fuel-air mixture in the engine’s combustion chamber. The article presents the results of tests that indicate that the measured temperatures in the place where the sensor was installed (in the combustion chamber) did not exceed the critical value specified by the pressure sensor manufacturer. The article also presents the results of cylinder pressure measurement not only in the combustion chamber but also in two other points - on the thread of the indicator cock and in the measuring channel between the indicator cock and the cylinder head. The tests were carried out in a wide range of engine load technically efficient and with simulated damage in the fuel injection system. The article presents a comparative analysis of the parameters read out of the indicator diagram for the three above-mentioned pressure measurement locations. It was shown that the pressure measurements carried out directly in the combustion chamber are free from errors resulting from the influence of measuring channels and indicator cock.


2018 ◽  
Vol 172 (1) ◽  
pp. 35-43
Author(s):  
Maciej SIDOROWICZ ◽  
Ireneusz PIELECHA

Direct fuel injection requires appropriate conditions for proper ignition of the formed mixture. The proper combustion process is shaped by the direct fuel injection, whose parameters vary. Preparation of the dose requires proper injector placement in the combustion chamber. This article focuses on the issue of the injector specific spatial and angular position in order to implement the injection and atomization of the fuel. The injectors pseudo-optimal location has been presented along with several changed positions. The research was conducted as a simulation experiment using AVL FIRE 2017 software. The best position of the injector was selected based on the fuel spraying and injection process indicators. It has been shown that the spatial position has the most impact and the injector placement angle is of secondary importance.


2019 ◽  
Vol 70 (3) ◽  
pp. 929-933
Author(s):  
Catalin Faitar ◽  
Feiza Memet ◽  
Nicolae Buzbuchi

Maritime University of Constanta, Faculty of Naval Electromechanics, 104 Mircea cel Batran Str., 900663, Constanta, Romania Combustion inside diesel engine cylinders is the critical factor that controls the emission and combustion gases. Fuel injection in the engine cylinder is the decisive factor in the combustion of diesel engines and, consequently, combustion can be effectively controlled if the fuel injection process is efficiently controlled. From this perspective, the simulation of the complex processes of fuel injection in diesel engines in various situations can make a positive contribution to the optimization of marine propulsion systems. Also, correct dimensioning of the injection system components and its optimization and, implicitly, the combustion parameters, can have positive results in the context of reducing the impact of combustion gases of internal combustion engines, on the greenhouse effect and global warming.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4166
Author(s):  
Carmen Mata ◽  
Jakub Piaszyk ◽  
José Antonio Soriano ◽  
José Martín Herreros ◽  
Athanasios Tsolakis ◽  
...  

Common rail (CR) diesel fuel injection systems are very sensitive to variations in fuel properties, thus the impact of alternative fuels on the durability of the injection system should be investigated when considering the use of alternative fuels. This work studies a high-pressure CR (HPCR) diesel fuel injection system operating for 400 h in an injection test bench, using a fuel blend composed of an alternative paraffinic fuel and conventional diesel (50PF50D). The alternative fuel does not have aromatic components and has lower density than conventional diesel fuel. The injection system durability study was carried out under typical injection pressure and fuel temperature for the fuel pump, the common rail and the injector. The results show that the HPCR fuel injection system and its components (e.g., piston, spring, cylinder, driveshaft and cam) have no indication of damage, wear or change in surface roughness. The absence of internal wear to the components of the injection system is supported by the approximately constant total flow rate that reaches the injector during the whole the 400 h of the experiment. However, the size of the injector nozzle holes was decreased (approximately 12%), being consistent with the increase in the return fuel flow of the injector and rail (approximately 13%) after the completion of the study. Overall, the injection system maintained its operability during the whole duration of the durability study, which encourages the use of paraffinic fuels as an alternative to conventional diesel fuel.


2014 ◽  
Vol 7 (3) ◽  
pp. 849-860 ◽  
Author(s):  
Arij Ben Amara ◽  
Bertrand Lecointe ◽  
Nicolas Jeuland ◽  
Takuya Takahashi ◽  
Yutaka IIda ◽  
...  

Author(s):  
A. H. Lefebvre

The attainment of very low pollutant emissions, in particular oxides of nitrogen (NOx), from gas turbines is not only of considerable environmental concern but has also become an area of increasing competitiveness between the different engine manufacturers. For stationary engines, the attainment of ultra-low NOx has become the foremost marketing issue. This paper is devoted primarily to current and emerging technologies in the development of ultra-low emissions combustors for application to aircraft and stationary engines. Short descriptions of the basic design features of conventional gas turbine combustors and the methods of fuel injection now in widespread use are followed by a review of fuel spray characteristics and recent developments in the measurement and modeling of these characteristics. The main gas turbine generated pollutants and their mechanisms of formation are described, along with related environmental risks and various issues concerning emissions regulations and recently-enacted legislation for limiting the pollutant levels emitted by both aircraft and stationary engines. The impact of these emissions regulations on combustor and engine design are discussed first in relation to conventional combustors and then in the context of variable-geometry and staged combustors. Both these concepts are founded on emissions reduction by control of flame temperature. Basic approaches to the design of “dry” low NOx and ultra-low NOx combustors are reviewed. At the present time lean, premix, prevaporize, combustion appears to be the only technology available for achieving ultra-low NOx emissions from practical combustors. This concept is discussed in some detail, along with its inherent problems of autoignition, flashback, and acoustic resonance. Attention is also given to alternative methods of achieving ultra-low NOx emissions, notably the rich-bum, quick-quench, lean-burn and catalytic combustors. These concepts are now being actively developed, despite the formidable problems they present in terms of mixing and durability. The final section reviews the various correlations which are now being used to predict the exhaust gas concentrations of the main gaseous pollutant emissions from gas turbine engines. Comprehensive numerical methods have not yet completely displaced these semi-empirical correlations but are nevertheless providing useful insight into the interactions of swirling and recirculating flows with fuel sprays, as well as guidance to the combustion engineer during the design and development stages. Throughout the paper emphasis is placed on the important and sometimes pivotal role played by the fuel preparation process in the reduction of pollutant emissions from gas turbines.


Sign in / Sign up

Export Citation Format

Share Document