scholarly journals Occlusion-Aware Path Planning to Promote Infrared Positioning Accuracy for Autonomous Driving in a Warehouse

Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3093
Author(s):  
Bai Li ◽  
Shiqi Tang ◽  
Youmin Zhang ◽  
Xiang Zhong

Infrared positioning is a critical module in an indoor autonomous vehicle platform. In an infrared positioning system, the ego vehicle is equipped with an infrared emitter while the infrared receivers are fixed onto the ceiling. The infrared positioning result is accurate only when the number of valid infrared receivers is more than three. An infrared receiver easily becomes invalid if it does not receive light from the infrared emitter due to indoor occlusions. This study proposes an occlusion-aware path planner that enables an autonomous vehicle to navigate toward the occlusion-free part of the drivable area. The planner consists of four layers. In layer one, a homotopic A* path is searched for in the 2D grid map to roughly connect the initial and goal points. In layer two, a curvature-continuous reference line is planned close to the A* path using numerical optimal control. In layer three, a Frenet frame is constructed along the reference line, followed by a search for an occlusion-aware path within that frame via dynamic programming. In layer four, a curvature-continuous path is optimized via quadratic programming within the Frenet frame. A path planned within the Frenet frame may violate the curvature bounds in a real-world Cartesian frame; thus, layer four is implemented through trial and error. Simulation results in CarSim software show that the derived paths reduce the poor positioning risk and are easily tracked by a controller.

Author(s):  
Hrishikesh Dey ◽  
Rithika Ranadive ◽  
Abhishek Chaudhari

Path planning algorithm integrated with a velocity profile generation-based navigation system is one of the most important aspects of an autonomous driving system. In this paper, a real-time path planning solution to obtain a feasible and collision-free trajectory is proposed for navigating an autonomous car on a virtual highway. This is achieved by designing the navigation algorithm to incorporate a path planner for finding the optimal path, and a velocity planning algorithm for ensuring a safe and comfortable motion along the obtained path. The navigation algorithm was validated on the Unity 3D Highway-Simulated Environment for practical driving while maintaining velocity and acceleration constraints. The autonomous vehicle drives at the maximum specified velocity until interrupted by vehicular traffic, whereas then, the path planner, based on the various constraints provided by the simulator using µWebSockets, decides to either decelerate the vehicle or shift to a more secure lane. Subsequently, a splinebased trajectory generation for this path results in continuous and smooth trajectories. The velocity planner employs an analytical method based on trapezoidal velocity profile to generate velocities for the vehicle traveling along the precomputed path. To provide smooth control, an s-like trapezoidal profile is considered that uses a cubic spline for generating velocities for the ramp-up and ramp-down portions of the curve. The acceleration and velocity constraints, which are derived from road limitations and physical systems, are explicitly considered. Depending upon these constraints and higher module requirements (e.g., maintaining velocity, and stopping), an appropriate segment of the velocity profile is deployed. The motion profiles for all the use-cases are generated and verified graphically.


2020 ◽  
pp. 027836492097936
Author(s):  
Matthew Pitropov ◽  
Danson Evan Garcia ◽  
Jason Rebello ◽  
Michael Smart ◽  
Carlos Wang ◽  
...  

The Canadian Adverse Driving Conditions (CADC) dataset was collected with the Autonomoose autonomous vehicle platform, based on a modified Lincoln MKZ. The dataset, collected during winter within the Region of Waterloo, Canada, is the first autonomous driving dataset that focuses on adverse driving conditions specifically. It contains 7,000 frames of annotated data from 8 cameras (Ximea MQ013CG-E2), lidar (VLP-32C), and a GNSS+INS system (Novatel OEM638), collected through a variety of winter weather conditions. The sensors are time synchronized and calibrated with the intrinsic and extrinsic calibrations included in the dataset. Lidar frame annotations that represent ground truth for 3D object detection and tracking have been provided by Scale AI.


2021 ◽  
Vol 10 (3) ◽  
pp. 42
Author(s):  
Mohammed Al-Nuaimi ◽  
Sapto Wibowo ◽  
Hongyang Qu ◽  
Jonathan Aitken ◽  
Sandor Veres

The evolution of driving technology has recently progressed from active safety features and ADAS systems to fully sensor-guided autonomous driving. Bringing such a vehicle to market requires not only simulation and testing but formal verification to account for all possible traffic scenarios. A new verification approach, which combines the use of two well-known model checkers: model checker for multi-agent systems (MCMAS) and probabilistic model checker (PRISM), is presented for this purpose. The overall structure of our autonomous vehicle (AV) system consists of: (1) A perception system of sensors that feeds data into (2) a rational agent (RA) based on a belief–desire–intention (BDI) architecture, which uses a model of the environment and is connected to the RA for verification of decision-making, and (3) a feedback control systems for following a self-planned path. MCMAS is used to check the consistency and stability of the BDI agent logic during design-time. PRISM is used to provide the RA with the probability of success while it decides to take action during run-time operation. This allows the RA to select movements of the highest probability of success from several generated alternatives. This framework has been tested on a new AV software platform built using the robot operating system (ROS) and virtual reality (VR) Gazebo Simulator. It also includes a parking lot scenario to test the feasibility of this approach in a realistic environment. A practical implementation of the AV system was also carried out on the experimental testbed.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 420
Author(s):  
Stefano Quer ◽  
Luz Garcia

Research on autonomous cars has become one of the main research paths in the automotive industry, with many critical issues that remain to be explored while considering the overall methodology and its practical applicability. In this paper, we present an industrial experience in which we build a complete autonomous driving system, from the sensor units to the car control equipment, and we describe its adoption and testing phase on the field. We report how we organize data fusion and map manipulation to represent the required reality. We focus on the communication and synchronization issues between the data-fusion device and the path-planner, between the CPU and the GPU units, and among different CUDA kernels implementing the core local planner module. In these frameworks, we propose simple representation strategies and approximation techniques which guarantee almost no penalty in terms of accuracy and large savings in terms of memory occupation and memory transfer times. We show how we adopt a recent implementation on parallel many-core devices, such as CUDA-based GPGPU, to reduce the computational burden of rapidly exploring random trees to explore the state space along with a given reference path. We report on our use of the controller and the vehicle simulator. We run experiments on several real scenarios, and we report the paths generated with the different settings, with their relative errors and computation times. We prove that our approach can generate reasonable paths on a multitude of standard maneuvers in real time.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6733
Author(s):  
Min-Joong Kim ◽  
Sung-Hun Yu ◽  
Tong-Hyun Kim ◽  
Joo-Uk Kim ◽  
Young-Min Kim

Today, a lot of research on autonomous driving technology is being conducted, and various vehicles with autonomous driving functions, such as ACC (adaptive cruise control) are being released. The autonomous vehicle recognizes obstacles ahead by the fusion of data from various sensors, such as lidar and radar sensors, including camera sensors. As the number of vehicles equipped with such autonomous driving functions increases, securing safety and reliability is a big issue. Recently, Mobileye proposed the RSS (responsibility-sensitive safety) model, which is a white box mathematical model, to secure the safety of autonomous vehicles and clarify responsibility in the case of an accident. In this paper, a method of applying the RSS model to a variable focus function camera that can cover the recognition range of a lidar sensor and a radar sensor with a single camera sensor is considered. The variables of the RSS model suitable for the variable focus function camera were defined, the variable values were determined, and the safe distances for each velocity were derived by applying the determined variable values. In addition, as a result of considering the time required to obtain the data, and the time required to change the focal length of the camera, it was confirmed that the response time obtained using the derived safe distance was a valid result.


Author(s):  
José A. Fernández-León ◽  
Gerardo G. Acosta ◽  
Miguel A. Mayosky ◽  
Oscar C. Ibáñez

This work is intended to give an overview of technologies, developed from an artificial intelligence standpoint, devised to face the different planning and control problems involved in trajectory generation for mobile robots. The purpose of this analysis is to give a current context to present the Evolutionary Robotics approach to the problem, which is now being considered as a feasible methodology to develop mobile robots for solving real life problems. This chapter also show the authors’ experiences on related case studies, which are briefly described (a fuzzy logic based path planner for a terrestrial mobile robot, and a knowledge-based system for desired trajectory generation in the Geosub underwater autonomous vehicle). The development of different behaviours within a path generator, built with Evolutionary Robotics concepts, is tested in a Khepera© robot and analyzed in detail. Finally, behaviour coordination based on the artificial immune system metaphor is evaluated for the same application.


2019 ◽  
Vol 8 (6) ◽  
pp. 288 ◽  
Author(s):  
Kelvin Wong ◽  
Ehsan Javanmardi ◽  
Mahdi Javanmardi ◽  
Shunsuke Kamijo

Accurately and precisely knowing the location of the vehicle is a critical requirement for safe and successful autonomous driving. Recent studies suggest that error for map-based localization methods are tightly coupled with the surrounding environment. Considering this relationship, it is therefore possible to estimate localization error by quantifying the representation and layout of real-world phenomena. To date, existing work on estimating localization error have been limited to using self-collected 3D point cloud maps. This paper investigates the use of pre-existing 2D geographic information datasets as a proxy to estimate autonomous vehicle localization error. Seven map evaluation factors were defined for 2D geographic information in a vector format, and random forest regression was used to estimate localization error for five experiment paths in Shinjuku, Tokyo. In the best model, the results show that it is possible to estimate autonomous vehicle localization error with 69.8% of predictions within 2.5 cm and 87.4% within 5 cm.


Author(s):  
Yuan Shi ◽  
Wenhui Huang ◽  
Federico Cheli ◽  
Monica Bordegoni ◽  
Giandomenico Caruso

Abstract A bursting number of achievements in the autonomous vehicle industry have been obtained during the past decades. Various systems have been developed to make automated driving possible. Due to the algorithm used in the autonomous vehicle system, the performance of the vehicle differs from one to another. However, very few studies have given insight into the influence caused by implementing different algorithms from a human factors point of view. Two systems based on two algorithms with different characteristics are utilized to generate the two driving styles of the autonomous vehicle, which are implemented into a driving simulator in order to create the autonomous driving experience. User’s skin conductance (SC) data, which enables the evaluation of user’s cognitive workload and mental stress were recorded and analyzed. Subjective measures were applied by filling out Swedish occupational fatigue inventory (SOFI-20) to get a user self-reporting perspective view of their behavior changes along with the experiments. The results showed that human’s states were affected by the driving styles of different autonomous systems, especially in the period of speed variation. By analyzing users’ self-assessment data, a correlation was observed between the user “Sleepiness” and the driving style of the autonomous vehicle. These results would be meaningful for the future development of the autonomous vehicle systems, in terms of balancing the performance of the vehicle and user’s experience.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2903 ◽  
Author(s):  
Chanyoung Jung ◽  
Daegyu Lee ◽  
Seungwook Lee ◽  
David Hyunchul Shim

In recent years, research concerning autonomous driving has gained momentum to enhance road safety and traffic efficiency. Relevant concepts are being applied to the fields of perception, planning, and control of automated vehicles to leverage the advantages offered by the vehicle-to-everything (V2X) communication technology. This paper presents a V2X communication-aided autonomous driving system for vehicles. It is comprised of three subsystems: beyond line-of-sight (BLOS) perception, extended planning, and control. Specifically, the BLOS perception subsystem facilitates unlimited LOS environmental perception through data fusion between local perception using on-board sensors and communication perception via V2X. In the extended planning subsystem, various algorithms are presented regarding the route, velocity, and behavior planning to reflect real-time traffic information obtained utilizing V2X communication. To verify the results, the proposed system was integrated into a full-scale vehicle that participated in the 2019 Hyundai Autonomous Vehicle Competition held in K-city with the V2X infrastructure. Using the proposed system, the authors demonstrated successful completion of all assigned real-life-based missions, including emergency braking caused by a jaywalker, detouring around a construction site ahead, complying with traffic signals, collision avoidance, and yielding the ego-lane for an emergency vehicle. The findings of this study demonstrated the possibility of several potential applications of V2X communication with regard to autonomous driving systems.


Sign in / Sign up

Export Citation Format

Share Document