scholarly journals Parameter Identification of DC-DC Converters under Steady-State and Transient Conditions Based on White-Box Models

Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 393 ◽  
Author(s):  
Jordi-Roger Riba ◽  
Manuel Moreno-Eguilaz ◽  
Santiago Bogarra ◽  
Antoni Garcia

This paper proposes a white-box approach for identifying the parameters of DC-DC buck and boost switch mode power converters. It is based on discretizing the differential equations that describe the dynamic behavior of the converters. From the discretized equations and experimental data, the parameters of the converters are identified, thus obtaining both the values of the passive components and the transfer function coefficients of the controller. To this end, steady state and transient experimental signals are analyzed, including the input and output voltages and the inductor and output currents. To determine the accuracy of the proposed method, once the parameters are identified, a simulation with the identified parameters of the converter is run and compared with experimental signals. Such results show the accuracy and feasibility of the approach proposed in this work, which can be extended to other converters and electrical and electronic devices.

2005 ◽  
Vol 24 (2) ◽  
pp. 125-134
Author(s):  
Manabu Kosaka ◽  
Hiroshi Uda ◽  
Eiichi Bamba ◽  
Hiroshi Shibata

In this paper, we propose a deterministic off-line identification method performed by using input and output data with a constant steady state output response such as a step response that causes noise or vibration from a mechanical system at the moment when it is applied but they are attenuated asymptotically. The method can directly acquire any order of reduced model without knowing the real order of a plant, in such a way that the intermediate parameters are uniquely determined so as to be orthogonal with respect to 0 ∼ N-tuple integral values of output error and irrelevant to the unmodelled dynamics. From the intermediate parameters, the coefficients of a rational transfer function are calculated. In consequence, the method can be executed for any plant without knowing or estimating its order at the beginning. The effectiveness of the method is illustrated by numerical simulations and also by applying it to a 2-mass system.


Author(s):  
Gabriel Rojas-Dueñas ◽  
Jordi-Roger Riba ◽  
Manuel Moreno-Eguilaz

This paper proposes an approach to estimate the parameters of an AC-DC boost power factor corrector converter which includes an EMI filter. To this end, once the topology is known, measurements at the input and output terminals of the converter are done to identify the values of the passive elements. The proposed methodology is based on the trust-region nonlinear least squares algorithm to identify the parameters of the converter. The steady-state and the transient signals of the converter at the input/output terminals are acquired non-intrusively without any internal modification of the circuitry. The accuracy of the parameter identification carried out is determined by comparing the estimated values with the actual values provided by the manufacturer, and by contrasting the measured signals with the ones obtained with a simulation model with the estimated values of the parameters. The results presented in this paper prove the accuracy of the proposed approach, which can be extended to other power converters and filters.


Author(s):  
Sebastian Brusca ◽  
Rosario Lanzafame ◽  
Maria Luisa Lo Trovato

The present paper deals with the dynamic analysis of a heavy duty combustion turbine running on natural gas. Hence, a mathematical model of the power plant has been implemented. The model is able to simulate the engine behavior during steady state, as well as transient conditions. In order to test the model efficacy and accuracy, a dynamic analysis of a Siemens V94.3 A running as topper in a Combined Cycle (CC) complex has been carried out. Therefore, numerical results have been compared with experimental data extracted from the monitoring system of the plant for different running conditions. Comparison results analysis highlighted that the developed mathematical model is able to simulate correctly engine behavior in different combustion turbine conditions.


Author(s):  
Mario L. Ferrari ◽  
Matteo Pascenti ◽  
Aristide F. Massardo

The aim of this work is the experimental validation of a steady-state and transient ejector model for high temperature fuel cell hybrid system applications. This is a mandatory step in performing the steady state and the transient analysis of the whole plant to avoid critical situations and to develop the control system. The anodic recirculation test rig, developed at TPG-University of Genoa, and already used in previous works to validate the ejector design models (0D and computational fluid dynamics), was modified and used to perform tests at transient conditions with the aim of ejector transient model validation. This ejector model, based on a “lumped volume” technique, has been successfully validated against experimental data at steady-state and transient conditions using air or CO2 at room temperature and at 150°C in the secondary duct inlet. Then, the ejector model was integrated with the models of the connecting pipes, and with the volume simulation tool, equipped with an outlet valve, in order to generate an anodic recirculation model. Also in this case, the theoretical results were successfully compared with the experimental data obtained with the test rig. The final part of the paper is devoted to the results obtained with square wave functions generated in the ejector primary pressure. To study the effects of possible fast pressure variations in the fuel line (ejector primary line), the test rig was equipped with a servo-controlled valve upstream of the ejector primary duct to generate different frequency pressure oscillations. The results calculated with the recirculation model at these conditions were successfully compared with the experimental data too.


2009 ◽  
Vol E92-C (10) ◽  
pp. 1299-1303
Author(s):  
Xiaojuan XIA ◽  
Liang XIE ◽  
Weifeng SUN ◽  
Longxing SHI

1985 ◽  
Vol 248 (5) ◽  
pp. C498-C509 ◽  
Author(s):  
D. Restrepo ◽  
G. A. Kimmich

Zero-trans kinetics of Na+-sugar cotransport were investigated. Sugar influx was measured at various sodium and sugar concentrations in K+-loaded cells treated with rotenone and valinomycin. Sugar influx follows Michaelis-Menten kinetics as a function of sugar concentration but not as a function of Na+ concentration. Nine models with 1:1 or 2:1 sodium:sugar stoichiometry were considered. The flux equations for these models were solved assuming steady-state distribution of carrier forms and that translocation across the membrane is rate limiting. Classical enzyme kinetic methods and a least-squares fit of flux equations to the experimental data were used to assess the fit of the different models. Four models can be discarded on this basis. Of the remaining models, we discard two on the basis of the trans sodium dependence and the coupling stoichiometry [G. A. Kimmich and J. Randles, Am. J. Physiol. 247 (Cell Physiol. 16): C74-C82, 1984]. The remaining models are terter ordered mechanisms with sodium debinding first at the trans side. If transfer across the membrane is rate limiting, the binding order can be determined to be sodium:sugar:sodium.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1717
Author(s):  
Camilo Andrés Ordóñez ◽  
Antonio Gómez-Expósito ◽  
José María Maza-Ortega

This paper reviews the basics of series compensation in transmission systems through a literature survey. The benefits that this technology brings to enhance the steady state and dynamic operation of power systems are analyzed. The review outlines the evolution of the series compensation technologies, from mechanically operated switches to line- and self-commutated power electronic devices, covering control issues, different applications, practical realizations, and case studies. Finally, the paper closes with the major challenges that this technology will face in the near future to achieve a fully decarbonized power system.


2011 ◽  
Vol 78 (2) ◽  
pp. 165-174 ◽  
Author(s):  
C. L. XAPLANTERIS ◽  
E. D. FILIPPAKI ◽  
I. S. MISTAKIDIS ◽  
L. C. XAPLANTERIS

AbstractMany experimental data along with their theoretical interpretations on the rf low-temperature cylindrical plasma have been issued until today. Our Laboratory has contributed to that research by publishing results and interpretative mathematical models. With the present paper, two issues are being examined; firstly, the estimation of electron drift caused by the rf field gradient, which is the initial reason for the plasma behaviour, and secondly, many new experimental results, especially the electron-neutral collision frequency effect on the other plasma parameters and quantities. Up till now, only the plasma steady state was taken into consideration when a theoretical elaboration was carried out, regardless of the cause and the effect. This indicates the plasma's complicated and chaotic configuration and the need to simplify the problem. In the present work, a classification about the causality of the phenomena is attempted; the rf field gradient electron drift is proved to be the initial cause.


Sign in / Sign up

Export Citation Format

Share Document