scholarly journals Application of Lagrange Relaxation to Decentralized Optimization of Dispatching a Charging Station for Electric Vehicles

Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 288 ◽  
Author(s):  
Shan Cheng ◽  
Yichen Feng ◽  
Xianning Wang

To improve the computation efficiency of optimally dispatching large-scale cluster electric vehicles (EVs) and to enhance the profit of a charging station (CS) for EVs, this study investigates the optimal dispatch of the CS based on a decentralized optimization method and a time-of-use (TOU) price strategy. With the application of the Lagrange relaxation method (LRM), a decentralized optimization model with its solution is proposed that converts the traditional centralized optimization model into certain sub-problems. The optimization model aims to maximize the profit of CS, but it comprehensively considers the charging preference of EV users, the operation constraints of the distribution network, and the TOU strategy adopted by the CS. To validate the proposed decentralized optimal dispatching method, a series of numerical simulations were conducted to demonstrate its effect on the computation efficiency and stability, the profit of the CS, and the peak-load shifting. The result indicates that the TOU strategy markedly increases the profit of the CS in comparison with the fixed electricity price mechanism, and the computation efficiency and stability are much better than those of the centralized optimization method. Although it does not compensate the load fluctuation completely, the proposed method with the TOU strategy is helpful for filling the valley of power use.

SIMULATION ◽  
2018 ◽  
Vol 94 (7) ◽  
pp. 625-636 ◽  
Author(s):  
Zhihui Tian ◽  
Wenbin Hou ◽  
Xiaoning Gu ◽  
Feng Gu ◽  
Baozhen Yao

The electric vehicle is seen as an effective way to alleviate the current energy crisis and environmental problems. However, the lack of supporting charging facilities is still a bottleneck in the development of electric vehicles in the Chinese market. In this paper, the cloud model is used to first predict drivers’ charging behavior. An optimization model of charging stations is proposed, which is based on waiting time. The target of this optimization model is to minimize the time cost to electric vehicle drivers. We use the SCE-UA algorithm to solve the optimization model. We apply our method to Dalian, China to optimize charging station locations. We also analyze the optimized result with or without behavior prediction, the optimized result of different numbers of electric vehicles, and the optimized result of different cost constraints. The analysis shows the feasibility and advantages of the charging station location optimization method proposed in this paper.


2011 ◽  
Vol 347-353 ◽  
pp. 3902-3907
Author(s):  
Liang Liang Chen ◽  
Ming Wu ◽  
Hao Zhang ◽  
Xiao Hua Ding ◽  
Jin Da Zhu

The energy supply infrastructures construction is the prerequisite and basis for the large-scale promotion and application of electric vehicles (EVs). The characteristics and current construction situation of several EV power supply infrastructures in China such as AC charging spot, charging station and battery swap station are introduced first, and the characteristics of time combination mode and space combination mode for the construction of EV charging facilities are also discussed. Meanwhile, the features of operation mode for EV power supply infrastructures in different developing stage of are analyzed, and the main bodies for EV power supply infrastructures construction are also introduced.


2015 ◽  
Vol 785 ◽  
pp. 697-701 ◽  
Author(s):  
Md. Mainul Islam ◽  
Hussein Shareef ◽  
Azah Mohamed

Environmental concerns, dependency on imported petroleum and lower cost alternative to gasoline always motivated policymakers worldwide to introduce electric vehicles in road transport system as a solution of those problems. The key issue in this system is recharging the electric vehicle batteries before they are exhausted. Thus, the charging station should be carefully located to make sure the vehicle users can access the charging station within its driving range. This paper therefore proposes a multi-objective optimization method for optimal placement of quick charging station. It intends to minimize the integrated cost of grid energy loss and travelling of vehicle to quick charging station. Due to contrary objectives, weighted sum method is assigned to generate reference Pareto optimal front and optimized the overture by genetic algorithm. The results show that the proposed method can find the optimal solution of quick charging station placement that can benefit electric vehicle users and power grid.


Author(s):  
Ibrahim El-Fedany ◽  
Driss Kiouach ◽  
Rachid Alaoui

Electric vehicles (EVs) are seen as one of the principal pillars of smart transportation to relieve the airborne pollution induced by fossil CO2 emissions. However, the battery limit, especially where the journey is with a long-distance road remains the most formidable obstacle to the large-scale use of EVs. To overcome the issue of prolonged waiting charging time due to the large number of EVs may have a charging plan at the same charging station (CS) along the highway, we propose a communication system to manage the EVs charging demands. The architecture system contains a smart scheduling algorithm to minimize trip time including waiting time, previous reservations and energyare needed to reach the destination. Moreover, an automatic mechanism for updating reservation is integrated to adjust the EVs charging plans. The results of the evaluation under the Moroccan highway scenario connecting Rabat and Agadir show the effectiveness of our proposal system.<br /><div> </div>


2013 ◽  
Vol 291-294 ◽  
pp. 872-877 ◽  
Author(s):  
Guo Bing Qiu ◽  
Wen Xia Liu ◽  
Jian Hua Zhang

As an important infrastructure of electric vehicles (EVs), EV fast charging station is of great significance in the popularization and development of EVs. Through the analysis of the characteristics of EV’s arriving time and charging duration in fast charging station, the stochastic service system was introduced and the queuing system model based on queuing theory was established. By calculating the indexes of the queuing system model, the desire model was used to optimize the number of EV chargers, which could save customers’ waiting time and reduce the investment of charging station. Finally, an example was simulated and calculated with MATLAB used as a simulation tool to verify the effectiveness of this approach.


2019 ◽  
Vol 11 (3) ◽  
pp. 643 ◽  
Author(s):  
Jianmin Jia ◽  
Chenhui Liu ◽  
Tao Wan

Electric Vehicles (EVs), by reducing the dependency on fossil fuel and minimizing the traffic-related pollutants emission, are considered as an effective component of a sustainable transportation system. However, the massive penetration of EVs brings a big challenge to the establishment of charging infrastructures. This paper presents the approach to locate charging stations utilizing the reconstructed EVs trajectory derived from the Cellular Signaling Data (CSD). Most previous work focused on the commute trips estimated from the number of jobs and households between traffic analysis zones (TAZs). This paper investigated the large-scale CSD and illustrated the method to generate the 24-hour travel demand for each EV. The complete trip in a day for EV was reconstructed through merging the time sequenced trajectory derived from simulation. This paper proposed a two-step model that grouped the charging demand location into clusters and then identified the charging station site through optimization. The proposed approach was applied to investigate the charging behavior of medium-range EVs with Cellular Signaling Data collected from the China Unicom in Tianjin. The results indicate that over 50% of the charging stations are located within the central urban area. The developed approach could contribute to the planning of future charging stations.


2014 ◽  
Vol 953-954 ◽  
pp. 1354-1358
Author(s):  
Wen Chen ◽  
Chun Lin Guo ◽  
Zong Feng Li ◽  
Dong Ming Jia ◽  
Jun Chen ◽  
...  

With the large-scale EV(electric vehicle) integrating into the power system, new challenges has been brought to the planning as well as the security of the network. There will be a great impact on the system if the system operator ignores the vast quantity of EV charging at the same. Thus, taking measures, e.g. the multiple tariff, is of vital importance to give the guidance to the EV owners to charging wisely to save the daily cost on charging, as well as reduce the gap between peak load and valley load. A model for TOU has been presented in this paper. In the model , an objective function is declared to describe the purpose of TOU, and the optimal solution is gained according to the response of EV when the price of electricity changes. Finally , a case based on the daily load curve of a certain place is calculated with the model in this paper.


Electric Vehicles (EV) are the world’s future transport systems. With the rise in pollutions and its effects on the environment, there has been a large scale movetowards electrical vehicles. But the plug point availability for charging is the serious problem faced by the mostof Electric Vehicle consumers. Therefore, there is a definite need to move from the GRID based/connected charging stations to standalone off-grid stations for charging the Electric Vehicles. The objective of this paper is to arrive at the best configuration or mix of the renewable resources and energy storage systems along with conventional Diesel Generator set which together works in offgrid for Electric Vehicle charging. As aconclusion, by utilizing self-sustainable off-grid power generation technology, the availability of EV charging stations in remote localities at affordable price can be made and mainly it reduces burden on the existing electrical infrastructure.


2021 ◽  
Vol 257 ◽  
pp. 01017
Author(s):  
Lin Xu ◽  
Bing Wang ◽  
Mingxi Cheng ◽  
Shangshang Fang

Due to the rapid promotion of electric vehicles, large-scale charging behavior of electric vehicles brings a large number of time and space highly random charging load, which will have a great impact on the safe operation of distribution network. This paper proposes a planning method of electric vehicle charging station based on travel data. Firstly, the didi trip data is processed and mined to get the trip matrix and other information. Then, the electric vehicle charging load forecasting model is established based on the established unit mileage power consumption model and charging model, and the charging demand distribution information is predicted by Monte Carlo method. Finally, the simulation analysis is carried out based on the trip data of some areas of a city, which shows the effectiveness of the established model feasibility.


2014 ◽  
Vol 953-954 ◽  
pp. 1338-1341 ◽  
Author(s):  
Zong Feng Li ◽  
Chun Lin Guo ◽  
Jun Chen ◽  
Zhe Ci Tang ◽  
Wen Chen ◽  
...  

As a promising transport in the future, electric vehicles plays an important role in people's lives and energy conservation. Planning of electric vehicle charging stations has a far-reaching significance for the popularity of electric vehicles. In this paper, we discuss the siting problem of electric vehicle charging station and propose a two-step method of optimization method. Firstly, we establish a charging station location model, then use Voronoi diagram to determine the preliminary zone, finally we get this problem optimally solved by immune algorithm.The example verifies feasibility of this model.


Sign in / Sign up

Export Citation Format

Share Document