scholarly journals An Implementation Scheme of Range and Angular Measurements for FMCW MIMO Radar via Sparse Spectrum Fitting

Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 389
Author(s):  
Lidong Huang ◽  
Xianpeng Wang ◽  
Mengxing Huang ◽  
Liangtian Wan ◽  
Zhiguang Han ◽  
...  

The work presented in this paper is about implementing a frequency-modulated continuous wave (FMCW) multiple-input multiple-output (MIMO) positioning radar and a sparse spectrum fitting (SpSF) algorithm for range and angular measurements. First, we designed a coherent FMCW MIMO radar system working in the S-band with low power consumption that consists of four transmitter and four receiver antennas and has the ability to extend its virtual aperture; thus, this system can achieve a higher resolution than conventional phased array radars. Then, the SpSF algorithm was designed for estimating the distance and angle of the targets in the FMCW MIMO radar. Due to the fact that the SpSF algorithm can exploit the spatial sparsity diversity of a signal, the SpSF algorithm that is applied in the designed MIMO radar system can achieve a better estimation performance than the multiple signal classification (MUSIC) and Capon algorithms, especially in the context of small snapshots and low signal-to-noise ratios (SNRs). The simulated and experimental results are used to prove the effectiveness of the designed MIMO radar and the superior performance of the algorithm.


2021 ◽  
Vol 19 ◽  
pp. 23-29
Author(s):  
Christoph Dahl ◽  
Michael Vogt ◽  
Ilona Rolfes

Abstract. In this contribution, the design of a multiple-input multiple-output (MIMO) radar system in 77–81 GHz range with 18 transmitting antennas and 24 receiving antennas for measuring the height profile of bulk solids in silos, is presented and discussed. The antenna array topologies are optimized by utilizing space filling fractals in order to approximate a circular shaped antenna array on a hexagonal grid. The proposed MIMO radar system achieves an angular resolution of 3.1∘ for a maximum scanning angle of ±45∘ and a side lobe suppression of 12.6 dB. The performance of the system has been evaluated by test measurements on a sand heap, showing an improved measurement accuracy compared to conventional radar level systems.



2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Mengguan Pan ◽  
Baixiao Chen

The heavily congested radio frequency environment severely limits the signal bandwidth of the high frequency surface wave radar (HFSWR). Based on the concept of multiple-input multiple-output (MIMO) radar, we propose a MIMO sparse frequency HFSWR system to synthesize an equivalent large bandwidth waveform in the congested HF band. The utilized spectrum of the proposed system is discontinuous and irregularly distributed between different transmitting sensors. We investigate the sparse frequency modulated continuous wave (FMCW) signal and the corresponding deramping based receiver and signal processor specially. A general processing framework is presented for the proposed system. The crucial step is the range-azimuth processing and the sparsity of the carrier frequency causes the two-dimensional periodogram to fail when applied here. Therefore, we introduce the iterative adaptive approach (IAA) in the range-azimuth imaging. Based on the initial 1D IAA algorithm, we propose a modified 2D IAA which particularly fits the deramping processing based range-azimuth model. The proposed processing framework for MIMO sparse frequency FMCW HFSWR with the modified 2D IAA applied is shown to have a high resolution and be able to provide an accurate and clear range-azimuth image which benefits the following detection process.



2015 ◽  
Vol 713-715 ◽  
pp. 651-655 ◽  
Author(s):  
Li Li

The problem of target localization and parameter estimation in wideband bistatic Multiple-Input Multiple-Output (MIMO) radar system is considered. In this paper, we use a novel approach to estimate Doppler stretch and time delay in fractional Fourier transform (FRFT) domain. We also develop two sub-array models to accurately estimate the direction-of-departure (DOD) and the direction-of-arrival (DOA). Furthermore, the Cramér-Rao bound for target parameter estimation is derived and computed in closed form. Parameter estimation performances are evaluated and studied theoretically and via simulations



Electronics ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 193 ◽  
Author(s):  
Zhimin Chen ◽  
Xinyi He ◽  
Zhenxin Cao ◽  
Yi Jin ◽  
Jingchao Li

The existing positioning methods for the automatic guided vehicle (AGV) in the port can not achieve high location precision, Therefore, a novel multiple input multiple output (MIMO) antenna radar positioning scheme is proposed in this paper. The positioning problem for AGV is considered, and the joint estimation problem for direction of departure (DoD) and direction of arrival (DoA) is addressed in the multiple-input multiple-output (MIMO) radar system. With the radar detect the transponder and estimate the DoA/DoD, the relative location between the transponder and the AGV can be obtained. The corresponding Cramér–Rao lower bounds (CRLBs) for the target parameters are also derived theoretically. Finally, we compare the positioning accuracy of the traditional global position system (GPS) with the proposed MIMO radar system. Simulation results show that the proposed method can achieve better performance than the traditional GPS.



Multiple Input Multiple Output (MIMO) RADAR system is proficient in improving the range resolution while considering the orthogonality of the signal. In this paper, Poly Phase coded waveforms are optimized in time domain. The phase codes of the transmit waveforms are designed using ‘JAYA’ optimization algorithm and compared with the literature. Though Multi-Objective Decision Making (MODM) problem shows trade-off between different performance parameters, computationally effective ‘JAYA’ algorithm outperforms. The approach is validated with mathematical modeling and numerical simulations.



2021 ◽  
Vol 13 (15) ◽  
pp. 2964
Author(s):  
Fangqing Wen ◽  
Junpeng Shi ◽  
Xinhai Wang ◽  
Lin Wang

Ideal transmitting and receiving (Tx/Rx) array response is always desirable in multiple-input multiple-output (MIMO) radar. In practice, nevertheless, Tx/Rx arrays may be susceptible to unknown gain-phase errors (GPE) and yield seriously decreased positioning accuracy. This paper focuses on the direction-of-departure (DOD) and direction-of-arrival (DOA) problem in bistatic MIMO radar with unknown gain-phase errors (GPE). A novel parallel factor (PARAFAC) estimator is proposed. The factor matrices containing DOD and DOA are firstly obtained via PARAFAC decomposition. One DOD-DOA pair estimation is then accomplished from the spectrum searching. Thereafter, the remainder DOD and DOA are achieved by the least squares technique with the previous estimated angle pair. The proposed estimator is analyzed in detail. It only requires one instrumental Tx/Rx sensor, and it outperforms the state-of-the-art algorithms. Numerical simulations verify the theoretical advantages.



Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2453 ◽  
Author(s):  
Guangyong Zheng ◽  
Siqi Na ◽  
Tianyao Huang ◽  
Lulu Wang

Distributed multiple input multiple output (MIMO) radar has attracted much attention for its improved detection and estimation performance as well as enhanced electronic counter-counter measures (ECCM) ability. To protect the target from being detected and tracked by such radar, we consider a barrage jamming strategy towards a distributed MIMO. We first derive the Cramer–Rao bound (CRB) of target parameters estimation using a distributed MIMO under barrage jamming environments. We then set maximizing the CRB as the criterion for jamming resource allocation, aiming at degrading the accuracy of target parameters estimation. Due to the non-convexity of the CRB maximizing problem, particle swarm optimization is used to solve the problem. Simulation results demonstrate the advantages of the proposed strategy over traditional jamming methods.



2013 ◽  
Vol 443 ◽  
pp. 649-652
Author(s):  
Yan Ling Luo

MIMO radar (Multiple input multiple output radar) is a hot topic which gets lots of attention from researchers all around the world recently. It can achieve better detection performance than conventional phased radar. In this paper, the MIMO radar signal model is studied, and then the concept of MIMO radar is applied into SAR. The technique is employed to detect the oil spill in sea. At last, some conclusion is drawn. And some item for future research in presented also.



Sign in / Sign up

Export Citation Format

Share Document