scholarly journals 92.5% Average Power Efficiency Fully Integrated Floating Buck Quasi-Resonant LED Drivers Using GaN FETs

Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 575
Author(s):  
Mei Yu Soh ◽  
S. Lawrence Selvaraj ◽  
Lulu Peng ◽  
Kiat Seng Yeo

LEDs are highly energy efficient and have substantially longer lifetimes compared to other existing lighting technologies. In order to facilitate the new generation of LED devices, approaches to improve power efficiency with increased integration level for lighting device should be analysed. This paper proposes a fully on-chip integrated LED driver design implemented using heterogeneous integration of gallium nitride (GaN) devices atop BCD circuits. The performance of the proposed design is then compared with the conventional fully on-board integration of power devices with the LED driver integrated circuit (IC). The experimental results confirm that the fully on-chip integrated LED driver achieves a consistently higher power efficiency value compared with the fully on-board design within the input voltage range of 4.5–5.5 V. The maximal percentage improvement in the efficiency of the on-chip solution compared with the on-board solution is 18%.

2020 ◽  
pp. 99-107
Author(s):  
Erdal Sehirli

This paper presents the comparison of LED driver topologies that include SEPIC, CUK and FLYBACK DC-DC converters. Both topologies are designed for 8W power and operated in discontinuous conduction mode (DCM) with 88 kHz switching frequency. Furthermore, inductors of SEPIC and CUK converters are wounded as coupled. Applications are realized by using SG3524 integrated circuit for open loop and PIC16F877 microcontroller for closed loop. Besides, ACS712 current sensor used to limit maximum LED current for closed loop applications. Finally, SEPIC, CUK and FLYBACK DC-DC LED drivers are compared with respect to LED current, LED voltage, input voltage and current. Also, advantages and disadvantages of all topologies are concluded.


2018 ◽  
Vol 2 (1) ◽  
pp. 30
Author(s):  
Hisatsugu Kato ◽  
Yoichi Ishizuka ◽  
Kohei Ueda ◽  
Shotaro Karasuyama ◽  
Atsushi Ogasahara

This paper proposes a design technique of high power efficiency LLC DC-DC Converters for Photovoltaic Cells. The secondary side circuit and transformer fabrication of proposed circuit are optimized for overcoming the disadvantage of limited input voltage range and, realizing high power efficiency over a wide load range of LLC DC-DC converters. The optimized technique is described with theoretically and with simulation results. Some experimental results have been obtained with the prototype circuit designed for the 80 - 400 V input voltage range. The maximum power efficiency is 98 %.


2015 ◽  
Vol 16 (3) ◽  
pp. 473
Author(s):  
Thirumalini P ◽  
R. Arulmozhiyal ◽  
M Murali

This paper describes a multilevel Z-source inverter for solar photovoltaic applications. The conventional power conversion topology performs either buck or boost the input voltage for non linear load depending upon duty ratio and modulation index in a multiple stage conversion with the help of impedance source passive network (L and C), which is usually known as Z-Source, which couples the n level source with input to the power source and increase the power efficiency. The multilevel z network capabilities of inverter are operated in the shoot through state of duty cycle and it acts as a filter to reduces the level of harmonics, stabilize power factor and to increase the output AC voltage range of inverter. To overcome further harmonics, multilevel level operation z source inverter compensates the fundamental level of harmonic in renewable. Proposed work as a whole involves the simulation part to design multilevel inverter. The output of the simulation is obtained by Simulink model using MATLAB.


2012 ◽  
Vol 542-543 ◽  
pp. 997-1000 ◽  
Author(s):  
Jin Jian Zhang ◽  
Xian Song Fu ◽  
Ping Juan Niu ◽  
Yi Li Liu

A steady output single-ended flyback switching power supply using L6561 current mode PWM controller designed in this paper. The designed circuit consists of single-ended flyback topology and based on the peak current PWM technology. The circuit has input voltage range from 85V AC to 265V AC and about output drive capability of 12V/2A. Based on the specific chip L6561, the novel single-ended flyback AC/DC converting circuit is adapted for mobile or office equipment, off-line battery chargers. The low-power Switched-Mode Power Supply (SMPS) are the most noticeable examples of application that this configuration can fit. The testing results show that the design of this method can reduce the switching power supply ripple, and ensure stable voltage output.


2014 ◽  
Vol 960-961 ◽  
pp. 1264-1267
Author(s):  
Zhu Lei Shao

A flyback switching power supply was designed, which can drive LED stability. The switching power supply is the single-ended flyback structure, and based on PWM driver chip L6561. The input voltage range of the switching power supply is 85V to 265V. The output voltage is 15V and the maximum output current is 2A. The switch power supply is suitable for mobile phone, office equipment and LED. According to experiment, the switching power supply can steadily drive 5 LED, the ripple factor of output is 1.33%, the power efficiency is 85.7%.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 580
Author(s):  
Bor-Ren Lin ◽  
Yi-Hao Peng

This paper studies and implements a power converter to have less current ripple output and wide voltage input operation. A three-leg converter with different primary turns is presented on its high-voltage side to extend the input voltage range. The current doubler rectification circuit is adopted on the output side to have low current ripple capability. From the switching states of the three-leg converter, the presented circuit has two equivalent sub-circuits under different input voltage ranges (Vin = 120–270 V or 270–600 V). The general phase-shift pulse-width modulation is employed to control the presented converter so that power devices can be turned on at zero voltage in order to reduce switching loss. Compared to two-stage circuit topologies with a wide voltage input operation, the presented converter has the benefits of simple circuit structure, easy control algorithm using a general integrated circuit or digital controller, and less components. The performance of the presented circuit is confirmed and validated by an 800 W laboratory prototype.


Sign in / Sign up

Export Citation Format

Share Document