Fully Integrated Wide Input Voltage Range Capacitive DC-DC Converters: The Folding Dickson Converter

2015 ◽  
Vol 50 (7) ◽  
pp. 1560-1570 ◽  
Author(s):  
Athanasios Sarafianos ◽  
Michiel Steyaert
2015 ◽  
Vol 24 (07) ◽  
pp. 1550108 ◽  
Author(s):  
Cihun-Siyong Alex Gong ◽  
Long-Xi Chang

The solar energy conversion driven by the solar sensor (or the so-called solar cell) has become an important and feasible way to solve global energy crisis while at the same time minimizing environmental pollution. The solar charge controller is the key of its active system for the signal processing circuits involved. In this paper, a fully integrated solar charge controller is presented. The charger has wide input voltage range about 10–28 V for the solar-powered panel. The input loop regulation is used here as the maximum power point tracking protection. This charger also provides different kinds of battery voltages about 4–12 V. The controller system uses just one error amplifier (EA) and no external compensation components is needed. Besides, this controller has 600-kHz pulse-width modulation (PWM) and offers the over-current/over-voltage protection. Other components like bandgap, reference generator, saw-tooth generator, register controller and driver circuits are all implemented in this circuit. This chip is fabricated in a 0.4-μm 5 V/40 V 2P4M process. The power consumption of this full-integrated solar charge controller IC is about 10 mA.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 575
Author(s):  
Mei Yu Soh ◽  
S. Lawrence Selvaraj ◽  
Lulu Peng ◽  
Kiat Seng Yeo

LEDs are highly energy efficient and have substantially longer lifetimes compared to other existing lighting technologies. In order to facilitate the new generation of LED devices, approaches to improve power efficiency with increased integration level for lighting device should be analysed. This paper proposes a fully on-chip integrated LED driver design implemented using heterogeneous integration of gallium nitride (GaN) devices atop BCD circuits. The performance of the proposed design is then compared with the conventional fully on-board integration of power devices with the LED driver integrated circuit (IC). The experimental results confirm that the fully on-chip integrated LED driver achieves a consistently higher power efficiency value compared with the fully on-board design within the input voltage range of 4.5–5.5 V. The maximal percentage improvement in the efficiency of the on-chip solution compared with the on-board solution is 18%.


2018 ◽  
Vol 2 (1) ◽  
pp. 30
Author(s):  
Hisatsugu Kato ◽  
Yoichi Ishizuka ◽  
Kohei Ueda ◽  
Shotaro Karasuyama ◽  
Atsushi Ogasahara

This paper proposes a design technique of high power efficiency LLC DC-DC Converters for Photovoltaic Cells. The secondary side circuit and transformer fabrication of proposed circuit are optimized for overcoming the disadvantage of limited input voltage range and, realizing high power efficiency over a wide load range of LLC DC-DC converters. The optimized technique is described with theoretically and with simulation results. Some experimental results have been obtained with the prototype circuit designed for the 80 - 400 V input voltage range. The maximum power efficiency is 98 %.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2536
Author(s):  
Bor-Ren Lin ◽  
Yi-Kuan Lin

A full-bridge converter with an additional resonant circuit and variable secondary turns is presented and achieved to have soft-switching operation on active devices, wide voltage input operation and low freewheeling current loss. The resonant tank is linked to the lagging-leg of the full bridge pulse-width modulation converter to realize zero-voltage switching (ZVS) characteristic on the power switches. Therefore, the wide ZVS operation can be accomplished in the presented circuit over the whole input voltage range and output load. To overcome the wide voltage variation on renewable energy applications such as DC wind power and solar power conversion, two winding sets are used on the output-side of the proposed converter to obtain the different voltage gains. Therefore, the wide voltage input from 90 to 450 V (Vin,max = 5Vin,min) is implemented in the presented circuit. To further improve the freewheeling current loss issue in the conventional phase-shift pulse-width modulation converter, an auxiliary DC voltage generated from the resonant circuit is adopted to reduce this freewheeling current loss. Compared to the multi-stage DC converters with wide input voltage range operation, the proposed circuit has a low freewheeling current loss, low switching loss and a simple control algorithm. The studied circuit is tested and the experimental results are demonstrated to testify the performance of the resented circuit.


Electronics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 88
Author(s):  
Kosala Gunawardane ◽  
Nalin Bandara ◽  
Kasun Subasinghage ◽  
Nihal Kularatna

Cleaner and greener energy sources have proliferated on a worldwide basis, creating distributed energy systems. Given the unreliable nature of the renewable sources such as solar and wind, they are traditionally based on inverters interfaced with legacy AC grid systems. While efficiency, output waveform quality and other technical specifications of inverters keep improving gradually, only limited attention is given to widening the input range of inverters. This paper presents a new supercapacitor assisted (SCA) technique to widen the input range of an inverter without modifying the inverter itself. Developing a prototype version of a 24 V DC input capable supercapacitor-assisted wide input (SCASWI) inverter using a supercapacitor circulation front end and a commercial 12 V DC line frequency inverter is detailed in the article, explaining how the SCASWI inverter technique doubles the input voltage while maintaining the useful characteristics of the commercial inverter. The new technique has the added advantage of DC-UPS capability based on a long-life supercapacitor module.


2017 ◽  
Vol 26 (12) ◽  
pp. 1750196 ◽  
Author(s):  
Yanzhao Ma ◽  
Yinghui Zou ◽  
Shengbing Zhang ◽  
Xiaoya Fan

A fully-integrated self-startup circuit with ultra-low voltage for thermal energy harvesting is presented in this paper. The converter is composed of an enhanced swing LC oscillator and a charge pump with decreased equivalent input capacitance. The LC oscillator has ultra-low input voltage and high output voltage swing, and the charge pump has a fast charging speed and small equivalent input capacitance. This circuit is designed with 0.18[Formula: see text][Formula: see text]m standard CMOS process. The simulation results show that the output voltage is in the range of 0.14[Formula: see text]V and 2.97[Formula: see text]V when the input voltage is changed from 50[Formula: see text]mV to 150[Formula: see text]mV. The output voltage could reach 2.87[Formula: see text]V at the input voltage of 150[Formula: see text]mV and the load of 1[Formula: see text]M[Formula: see text]. The maximum efficiency is in the range of 10.0% and 14.8% when the input voltage is changed from 0.2[Formula: see text]V to 0.4[Formula: see text]V. The circuit is suitable for thermoelectric energy harvesting to start with ultra-low input voltage.


Sign in / Sign up

Export Citation Format

Share Document