scholarly journals Forecasting the Fuel Consumption of Passenger Ships with a Combination of Shallow and Deep Learning

Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 776 ◽  
Author(s):  
Ioannis Panapakidis ◽  
Vasiliki-Marianna Sourtzi ◽  
Athanasios Dagoumas

An accurate fuel consumption prediction system for transportation units is the pillar that a more efficient fuel management can rely on. This in turn may eventually lead to cost and emission savings for the unit’s owner. Numerous studies have been conducted for predicting the fuel usage in various means of transportation (i.e., airplanes, trucks, and vehicles). However, there is a limited number of researches that focus on passenger ships. These researches involve traditional machine learning models. There is a lack of literature on deep-learning-based forecasting models. The present paper serves as an initial study for exploring the potential of deep learning in day-ahead fuel consumption on a passenger ship. Firstly, a discussion is provided for the parameters that influence the fuel consumption. Secondly, the day-ahead fuel forecasting problem is formulated. To fully examine the influence of exogenous parameters on the consumption, various scenarios are formulated that differ in the types and number of inputs. The proposed forecasting model combines shallow and deep learning. Several machine learning and time series models were compared, and the results indicate the robustness of the proposed approach.

2021 ◽  
Vol 6 (11) ◽  
pp. 157
Author(s):  
Gonçalo Pereira ◽  
Manuel Parente ◽  
João Moutinho ◽  
Manuel Sampaio

Decision support and optimization tools to be used in construction often require an accurate estimation of the cost variables to maximize their benefit. Heavy machinery is traditionally one of the greatest costs to consider mainly due to fuel consumption. These typically diesel-powered machines have a great variability of fuel consumption depending on the scenario of utilization. This paper describes the creation of a framework aiming to estimate the fuel consumption of construction trucks depending on the carried load, the slope, the distance, and the pavement type. Having a more accurate estimation will increase the benefit of these optimization tools. The fuel consumption estimation model was developed using Machine Learning (ML) algorithms supported by data, which were gathered through several sensors, in a specially designed datalogger with wireless communication and opportunistic synchronization, in a real context experiment. The results demonstrated the viability of the method, providing important insight into the advantages associated with the combination of sensorization and the machine learning models in a real-world construction setting. Ultimately, this study comprises a significant step towards the achievement of IoT implementation from a Construction 4.0 viewpoint, especially when considering its potential for real-time and digital twins applications.


2021 ◽  
Vol 13 (2) ◽  
pp. 744
Author(s):  
Elsa Chaerun Nisa ◽  
Yean-Der Kuan

Over the last few decades, total energy consumption has increased while energy resources remain limited. Energy demand management is crucial for this reason. To solve this problem, predicting and forecasting water-cooled chiller power consumption using machine learning and deep learning are presented. The prediction models adopted are thermodynamic model and multi-layer perceptron (MLP), while the time-series forecasting models adopted are MLP, one-dimensional convolutional neural network (1D-CNN), and long short-term memory (LSTM). Each group of models is compared. The best model in each group is then selected for implementation. The data were collected every minute from an academic building at one of the universities in Taiwan. The experimental result demonstrates that the best prediction model is the MLP with 0.971 of determination (R2), 0.743 kW of mean absolute error (MAE), and 1.157 kW of root mean square error (RMSE). The time-series forecasting model trained every day for three consecutive days using new data to forecast the next minute of power consumption. The best time-series forecasting model is LSTM with 0.994 of R2, 0.233 kW of MAE, and 1.415 kW of RMSE. The models selected for both MLP and LSTM indicated very close predictive and forecasting values to the actual value.


2021 ◽  
Author(s):  
Μαρία Κασελίμη

The analysis of experimental data that have been observed at different points in time leads to new and unique problems in statistical modeling and inference. The obvious correlation introduced by the sampling of adjacent points in time can severely restrict the applicability of the many conventional statistical methods traditionally dependent on the assumption that these adjacent observations are independent andidentically distributed. The systematic approach by which one goes about answering the mathematical and statistical questions posed by these time correlations is commonly referred to as time series analysis (TSA).Time series modeling (TSM) plays a key role in a wide range of real-life problems that have a temporal component. Modern time series problems often pose significant challenges for the existing techniques both in terms of their complexity, structure and size. While traditional methods have focused on parametric models informed by domain expertise, modern machine learning (ML) methods provide a means to learn temporal dynamics in a purely data-driven manner. With the increasing data availability and computing power in recent times, machine learning has become a vital part of the next generation of time series models. Thus, there is both a great need and an exciting opportunity for the machine learning community to develop theory, models and algorithms specifically for the purpose of processing and analyzing time series data.The impact of time series modelling and analysis on scientific applications can be partially documented by analysing problems of various diverse fields in which important time series problems may arise. Modern time series problems are characterized by complexity. Also, since real-world systems often evolve under transient conditions, the signals/time series tend to exhibit various forms of non-stationarity. As far as mathematical models are concerned, they can be categorized in many different ways. They can be linear or non-linear, static or dynamic, continuous distinct in time, deterministic or contemplative. The proper model selection to accurately describe a system depends on the system under study, on whether the operation of the system is a-priory known or not, as well as on the purpose of the implementation. This dissertation presents developments in nonlinear and non-static time series models under a machine learning framework, comparing their performance in real-life application scenarios related to geoinformatics as well as environmental applications.In this dissertation is provided a comparative analysis that evaluates the performance of several deep learning (DL) architectures on a large number of time series datasets of different nature and for different applications. Two main fruitful research fields are discussed here which were strategically chosen in order to address current cross-disciplinary research priorities attracting the interest of geoinformatics communities. The first problem is related to ionospheric Total Electron Content (TEC) modeling which is an important issue in many real-time Global Navigation System Satellites (GNSS) applications. Reliable and fast knowledge about ionospheric variations becomes increasingly important. GNSS users of single-frequency receivers and satellite navigation systems need accurate corrections to remove signal degradation effects caused by the ionosphere. Ionospheric modeling using signal-processing techniques is the subject of discussion in the present contribution. The next problem under discussion is energy disaggregation which is an important issue for energy efficiency and energy consumption awareness. Reliable and fast knowledge about residential energy consumption at appliance level becomes increasingly important nowadays and it is an important mitigation measure to prevent energy wastage. Energy disaggregation or Non-intrusive load monitoring (NILM) is a single channel blind source separation problem where the task is to estimate the consumption of each electrical appliance given the total energy consumption. For both problems various deep learning models (DL) are proposed that cover various aspects of the problem under study, whereas experimental results indicate the proposed methods' superiority compared to the current state of the art.


Sign in / Sign up

Export Citation Format

Share Document