scholarly journals Neighbor Aware Protocols for IoT Devices in Smart Cities—Overview, Challenges and Solutions

Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 902
Author(s):  
Sungwon Lee ◽  
Muhammad Azfar Azfar Yaqub ◽  
Dongkyun Kim

The principle of Smart Cities is the interconnection of services, based on a network of Internet of Things (IoT) devices. As the number of IoT devices continue to grow, the demand to organize and maintain the IoT applications is increased. Therefore, the solutions for smart city should have the ability to efficiently utilize the resources and their associated challenges. Neighbor aware solutions can enhance the capabilities of the smart city. In this article, we briefly overview the neighbor aware solutions and challenges in smart cities. We then categorize the neighbor aware solutions and discuss the possibilities using the collaboration among neighbors to extend the lifetime of IoT devices. We also propose a new duty cycle MAC protocol with assistance from the neighbors to extend the lifetime of the nodes. Simulation results further coagulate the impact of neighbor assistance on the performance of IoT devices in smart cities.

2020 ◽  
Vol 12 (14) ◽  
pp. 5595 ◽  
Author(s):  
Ana Lavalle ◽  
Miguel A. Teruel ◽  
Alejandro Maté ◽  
Juan Trujillo

Fostering sustainability is paramount for Smart Cities development. Lately, Smart Cities are benefiting from the rising of Big Data coming from IoT devices, leading to improvements on monitoring and prevention. However, monitoring and prevention processes require visualization techniques as a key component. Indeed, in order to prevent possible hazards (such as fires, leaks, etc.) and optimize their resources, Smart Cities require adequate visualizations that provide insights to decision makers. Nevertheless, visualization of Big Data has always been a challenging issue, especially when such data are originated in real-time. This problem becomes even bigger in Smart City environments since we have to deal with many different groups of users and multiple heterogeneous data sources. Without a proper visualization methodology, complex dashboards including data from different nature are difficult to understand. In order to tackle this issue, we propose a methodology based on visualization techniques for Big Data, aimed at improving the evidence-gathering process by assisting users in the decision making in the context of Smart Cities. Moreover, in order to assess the impact of our proposal, a case study based on service calls for a fire department is presented. In this sense, our findings will be applied to data coming from citizen calls. Thus, the results of this work will contribute to the optimization of resources, namely fire extinguishing battalions, helping to improve their effectiveness and, as a result, the sustainability of a Smart City, operating better with less resources. Finally, in order to evaluate the impact of our proposal, we have performed an experiment, with non-expert users in data visualization.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 3047
Author(s):  
Kolade Olorunnife ◽  
Kevin Lee ◽  
Jonathan Kua

Recent years have seen the rapid adoption of Internet of Things (IoT) technologies, where billions of physical devices are interconnected to provide data sensing, computing and actuating capabilities. IoT-based systems have been extensively deployed across various sectors, such as smart homes, smart cities, smart transport, smart logistics and so forth. Newer paradigms such as edge computing are developed to facilitate computation and data intelligence to be performed closer to IoT devices, hence reducing latency for time-sensitive tasks. However, IoT applications are increasingly being deployed in remote and difficult to reach areas for edge computing scenarios. These deployment locations make upgrading application and dealing with software failures difficult. IoT applications are also increasingly being deployed as containers which offer increased remote management ability but are more complex to configure. This paper proposes an approach for effectively managing, updating and re-configuring container-based IoT software as efficiently, scalably and reliably as possible with minimal downtime upon the detection of software failures. The approach is evaluated using docker container-based IoT application deployments in an edge computing scenario.


Every day, we are stepping towards to lead a smart life within a smart world, thanks of IoT smart applications. The continually need for new urban systems including smart infrastructures, smart energy grids and smart mobility systems makes appear of a new concept, named: “Smart City”. This concept represents one of the most promising challenges of IoT applications since it involves the enhancement of our lifestyle. Among its promising advantage we can cites: the reducing resource consumption, the real-time guidance for citizens, the transportation facilities, etc. In this paper, we propose, first, a literature review on researches addressing many aspects of Smart City. Second, we provide a comparative study between these researches on the basic of multiple criteria like interoperability, scalability, security, etc.


2021 ◽  
Vol 15 (02) ◽  
pp. 19-24
Author(s):  
Vishv Patel ◽  
Devansh Shah ◽  
Nishant Doshi

The large deployment of the Internet of Things (IoT) is empowering Smart City tasks and activities everywhere throughout the world. Items utilized in day-by-day life are outfitted with IoT devices and sensors to make them interconnected and connected with the internet. Internet of Things (IoT) is a vital piece of a smart city that tremendously impact on all the city sectors, for example, governance, healthcare, mobility, pollution, and transportation. This all connected IoT devices will make the cities smart. As different smart city activities and undertakings have been propelled in recent times, we have seen the benefits as well as the risks. This paper depicts the primary challenges and weaknesses of applying IoT innovations dependent on smart city standards. Moreover, this paper points the outline of the technologies and applications of the smart cities.


2018 ◽  
Vol 10 (7) ◽  
pp. 2576 ◽  
Author(s):  
Muhammad Naeem ◽  
Rashid Ali ◽  
Byung-Seo Kim ◽  
Shahrudin Nor ◽  
Suhaidi Hassan

Named Data Networking is an evolving network model of the Information-centric networking (ICN) paradigm which provides Named-based data contents. In-network caching is the responsible for dissemination of these contents in a scalable and cost-efficient way. Due to the rapid expansion of Internet of Things (IoT) traffic, ICN is envisioned to be an appropriate architecture to maintain the IoT networks. In fact, ICN offers unique naming, multicast communications and, most beneficially, in-network caching that minimizes the response latency and server load. IoT environment involves a study of ICN caching policies in terms of content placement strategies. This paper addressed the caching strategies with the aim to recognize which caching strategy is the most suitable for IoT networks. Simulation results show the impact of different IoT ICN-based caching strategies, out of these; periodic caching is the most appropriate strategy for IoT environments in terms of stretch that results in decreasing the retrieval latency and improves the cache-hit ratio.


2021 ◽  
Vol 11 (22) ◽  
pp. 11011
Author(s):  
Moin Uddin ◽  
Muhammad Muzammal ◽  
Muhammad Khurram Hameed ◽  
Ibrahim Tariq Javed ◽  
Bandar Alamri ◽  
...  

Internet of things is widely used in the current era to collect data from sensors and perform specific tasks through processing according to the requirements. The data collected can be sent to a blockchain network to create secure and tamper-resistant records of transactions. The combination of blockchain with IoT has huge potential as it can provide decentralized computation, storage, and exchange for IoT data. However, IoT applications require a low-latency consensus mechanism due to its constraints. In this paper, CBCIoT, a consensus algorithm for blockchain-based IoT applications, is proposed. The primary purpose of this algorithm is to improve scalability in terms of validation and verification rate. The algorithm is developed to be compatible with IoT devices where a slight delay is acceptable. The simulation results show the proposed algorithm’s efficiency in terms of block generation time and transactions per second.


2018 ◽  
Vol 7 (4) ◽  
pp. 46 ◽  
Author(s):  
Shaza Hanif ◽  
Ahmed Khedr ◽  
Zaher Al Aghbari ◽  
Dharma Agrawal

With the emergence of Internet of Things (IoT), the research on Smart Cities with wireless sensor networks (WSNs) got leveraged due to similarities between objectives in both Smart City and IoT. Along with them, research in controlling WSN faces new challenges and opportunities for data aggregation and routing has received consistent focus from researchers. Yet new techniques are being proposed to address modern challenges in WSN and efficient resource utilization. Moreover, solutions are required to integrate existing deployed WSN with ever increasing numbers of IoT devices in Smart Cities, that benefit both. In this work, we present an approach for routing in a WSN, in which IoT is used opportunistically to reduce the communication overhead of the sensors. In our approach, WSN deployed in a Smart City interacts with the IoT devices to route the data to the sink. We build a prototype Integration Platform for the WSN that allows interaction with IoT devices and utilizes them opportunistically that results in an energy efficient routing of data. Simulation results show that the direction is quite promising and our approach offers to utilize IoT to gain unique advantages.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4798 ◽  
Author(s):  
Claudio Badii ◽  
Pierfrancesco Bellini ◽  
Angelo Difino ◽  
Paolo Nesi ◽  
Gianni Pantaleo ◽  
...  

Smart Cities are approaching the Internet of Things (IoT) World. Most of the first-generation Smart City solutions are based on Extract Transform Load (ETL); processes and languages that mainly support pull protocols for data gathering. IoT solutions are moving forward to event-driven processes using push protocols. Thus, the concept of IoT applications has turned out to be widespread; but it was initially “implemented” with ETL; rule-based solutions; and finally; with true data flows. In this paper, these aspects are reviewed, highlighting the requirements for smart city IoT applications and in particular, the ones that implement a set of specific MicroServices for IoT Applications in Smart City contexts. Moreover; our experience has allowed us to implement a suite of MicroServices for Node-RED; which has allowed for the creation of a wide range of new IoT applications for smart cities that includes dashboards, IoT Devices, data analytics, discovery, etc., as well as a corresponding Life Cycle. The proposed solution has been validated against a large number of IoT applications, as it can be verified by accessing the https://www.Snap4City.org portal; while only three of them have been described in the paper. In addition, the reported solution assessment has been carried out by a number of smart city experts. The work has been developed in the framework of the Select4Cities PCP (PreCommercial Procurement), funded by the European Commission as Snap4City platform.


2021 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Claudia Campolo ◽  
Giacomo Genovese ◽  
Antonio Iera ◽  
Antonella Molinaro

Several Internet of Things (IoT) applications are booming which rely on advanced artificial intelligence (AI) and, in particular, machine learning (ML) algorithms to assist the users and make decisions on their behalf in a large variety of contexts, such as smart homes, smart cities, smart factories. Although the traditional approach is to deploy such compute-intensive algorithms into the centralized cloud, the recent proliferation of low-cost, AI-powered microcontrollers and consumer devices paves the way for having the intelligence pervasively spread along the cloud-to-things continuum. The take off of such a promising vision may be hurdled by the resource constraints of IoT devices and by the heterogeneity of (mostly proprietary) AI-embedded software and hardware platforms. In this paper, we propose a solution for the AI distributed deployment at the deep edge, which lays its foundation in the IoT virtualization concept. We design a virtualization layer hosted at the network edge that is in charge of the semantic description of AI-embedded IoT devices, and, hence, it can expose as well as augment their cognitive capabilities in order to feed intelligent IoT applications. The proposal has been mainly devised with the twofold aim of (i) relieving the pressure on constrained devices that are solicited by multiple parties interested in accessing their generated data and inference, and (ii) and targeting interoperability among AI-powered platforms. A Proof-of-Concept (PoC) is provided to showcase the viability and advantages of the proposed solution.


2021 ◽  
Vol 13 (9) ◽  
pp. 4716
Author(s):  
Moustafa M. Nasralla

To develop sustainable rehabilitation systems, these should consider common problems on IoT devices such as low battery, connection issues and hardware damages. These should be able to rapidly detect any kind of problem incorporating the capacity of warning users about failures without interrupting rehabilitation services. A novel methodology is presented to guide the design and development of sustainable rehabilitation systems focusing on communication and networking among IoT devices in rehabilitation systems with virtual smart cities by using time series analysis for identifying malfunctioning IoT devices. This work is illustrated in a realistic rehabilitation simulation scenario in a virtual smart city using machine learning on time series for identifying and anticipating failures for supporting sustainability.


Sign in / Sign up

Export Citation Format

Share Document