scholarly journals CBCIoT: A Consensus Algorithm for Blockchain-Based IoT Applications

2021 ◽  
Vol 11 (22) ◽  
pp. 11011
Author(s):  
Moin Uddin ◽  
Muhammad Muzammal ◽  
Muhammad Khurram Hameed ◽  
Ibrahim Tariq Javed ◽  
Bandar Alamri ◽  
...  

Internet of things is widely used in the current era to collect data from sensors and perform specific tasks through processing according to the requirements. The data collected can be sent to a blockchain network to create secure and tamper-resistant records of transactions. The combination of blockchain with IoT has huge potential as it can provide decentralized computation, storage, and exchange for IoT data. However, IoT applications require a low-latency consensus mechanism due to its constraints. In this paper, CBCIoT, a consensus algorithm for blockchain-based IoT applications, is proposed. The primary purpose of this algorithm is to improve scalability in terms of validation and verification rate. The algorithm is developed to be compatible with IoT devices where a slight delay is acceptable. The simulation results show the proposed algorithm’s efficiency in terms of block generation time and transactions per second.

Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 902
Author(s):  
Sungwon Lee ◽  
Muhammad Azfar Azfar Yaqub ◽  
Dongkyun Kim

The principle of Smart Cities is the interconnection of services, based on a network of Internet of Things (IoT) devices. As the number of IoT devices continue to grow, the demand to organize and maintain the IoT applications is increased. Therefore, the solutions for smart city should have the ability to efficiently utilize the resources and their associated challenges. Neighbor aware solutions can enhance the capabilities of the smart city. In this article, we briefly overview the neighbor aware solutions and challenges in smart cities. We then categorize the neighbor aware solutions and discuss the possibilities using the collaboration among neighbors to extend the lifetime of IoT devices. We also propose a new duty cycle MAC protocol with assistance from the neighbors to extend the lifetime of the nodes. Simulation results further coagulate the impact of neighbor assistance on the performance of IoT devices in smart cities.


Internet of Things(IoT) is playing a pivotal role in our daily life as well as in various fields like Health, agriculture, industries etc. In the go, the data in the various IoT applications will be easily available to the physical dominion and thus the process of ensuringthe security of the data will be a major concern. For the extensive implementation of the numerous applications of IoT , the data security is a critical component. In our work, we have developed an encryption technique to secure the data of IoT. With the help of Merkle-Hellman encryption the data collected from the various IoT devices are first of all encrypted and then the secret message is generated with the help of Elliptic Curve Cryptography.


Author(s):  
Laura Belli ◽  
Simone Cirani ◽  
Luca Davoli ◽  
Gianluigi Ferrari ◽  
Lorenzo Melegari ◽  
...  

The Internet of Things (IoT) will consist of billions (50 billions by 2020) of interconnected heterogeneous devices denoted as “Smart Objects:” tiny, constrained devices which are going to be pervasively deployed in several contexts. To meet low-latency requirements, IoT applications must rely on specific architectures designed to handle the gigantic stream of data coming from Smart Objects. This paper propose a novel Cloud architecture for Big Stream applications that can efficiently handle data coming from Smart Objects through a Graph-based processing platform and deliver processed data to consumer applications with low latency. The authors reverse the traditional “Big Data” paradigm, where real-time constraints are not considered, and introduce the new “Big Stream” paradigm, which better fits IoT scenarios. The paper provides a performance evaluation of a practical open-source implementation of the proposed architecture. Other practical aspects, such as security considerations, and possible business oriented exploitation plans are presented.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Zeeshan Ali Khan ◽  
Peter Herrmann

Many Internet of Things (IoT) systems run on tiny connected devices that have to deal with severe processor and energy restrictions. Often, the limited processing resources do not allow the use of standard security mechanisms on the nodes, making IoT applications quite vulnerable to different types of attacks. This holds particularly for intrusion detection systems (IDS) that are usually too resource-heavy to be handled by small IoT devices. Thus, many IoT systems are not sufficiently protected against typical network attacks like Denial-of-Service (DoS) and routing attacks. On the other side, IDSs have already been successfully used in adjacent network types like Mobile Ad hoc Networks (MANET), Wireless Sensor Networks (WSN), and Cyber-Physical Systems (CPS) which, in part, face limitations similar to those of IoT applications. Moreover, there is research work ongoing that promises IDSs that may better fit to the limitations of IoT devices. In this article, we will give an overview about IDSs suited for IoT networks. Besides looking on approaches developed particularly for IoT, we introduce also work for the three similar network types mentioned above and discuss if they are also suitable for IoT systems. In addition, we present some suggestions for future research work that could be useful to make IoT networks more secure.


2020 ◽  
pp. 1260-1284
Author(s):  
Laura Belli ◽  
Simone Cirani ◽  
Luca Davoli ◽  
Gianluigi Ferrari ◽  
Lorenzo Melegari ◽  
...  

The Internet of Things (IoT) is expected to interconnect billions (around 50 by 2020) of heterogeneous sensor/actuator-equipped devices denoted as “Smart Objects” (SOs), characterized by constrained resources in terms of memory, processing, and communication reliability. Several IoT applications have real-time and low-latency requirements and must rely on architectures specifically designed to manage gigantic streams of information (in terms of number of data sources and transmission data rate). We refer to “Big Stream” as the paradigm which best fits the selected IoT scenario, in contrast to the traditional “Big Data” concept, which does not consider real-time constraints. Moreover, there are many security concerns related to IoT devices and to the Cloud. In this paper, we analyze security aspects in a novel Cloud architecture for Big Stream applications, which efficiently handles Big Stream data through a Graph-based platform and delivers processed data to consumers, with low latency. The authors detail each module defined in the system architecture, describing all refinements required to make the platform able to secure large data streams. An experimentation is also conducted in order to evaluate the performance of the proposed architecture when integrating security mechanisms.


Author(s):  
Mamata Rath ◽  
Bibudhendu Pati

Adoption of Internet of Things (IoT) and Cloud of Things (CoT) in the current developing technology era are expected to be more and more invasive, making them important mechanism of the future Internet-based communication systems. Cloud of Things and Internet of Things (IoT) are two emerging as well as diversified advanced domains that are diversified in current technological scenario. Paradigm where Cloud and IoT are merged together is foreseen as disruptive and as an enabler of a large number of application scenarios. Due to the adoption of the Cloud and IoT paradigm a number of applications are gaining important technical attention. In the future, it is going to be more complicated a setup to handle security in technology. Information till now will severely get changed and it will be very tough to keep up with varying technology. Organisations will have to repeatedly switch over to new skill-based technology with respect to higher expenditure. Latest tools, methods and enough expertise are highly essential to control threats and vulnerability to computing systems. Keeping in view the integration of Cloud computing and IoT in the new domain of Cloud of things, the said article provides an up-to-date eminence of Cloud-based IoT applications and Cloud of Things with a focus on their security and application-oriented challenges. These challenges are then synthesized in detail to present a technical survey on various issues related to IoT security, concerns, adopted mechanisms and their positive security assurance using Cloud of Things.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1925
Author(s):  
Soe Ye Yint Tun ◽  
Samaneh Madanian ◽  
Dave Parry

The elderly population is increasing globally, putting more pressure on aged care and public health systems. To address this issue and help increase the independence of older people, different digital technologies, including the Internet of things (IoT), can play an important role. Although there has been an increase in the number of studies in this field, most of them concentrate on IoT applications in elderly care from a technology perspective, with very little contribution from the clinical side. Therefore, this paper aims to investigate and identify the available IoT applications and their clinical utility for common diseases in elderly people. The results of this study could be useful for information technology professionals in developing and understanding the clinical requirements for IoT applications in healthcare for older people. Clinicians will also be informed about the clinical possibilities of using IoT devices in this area. Based on our findings, future research should focus on enhancing the clinical utility of current IoT applications in different settings and on developing new applications to support practitioners and older people.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6846
Author(s):  
Ngoc-Thanh Dinh ◽  
Young-Han Kim

Existing caching mechanisms considers content objects individually without considering the semantic correlation among content objects. We argue that this approach can be inefficient in Internet of Things due to the highly redundant nature of IoT device deployments and the data accuracy tolerance of IoT applications. In many IoT applications, an approximate answer is acceptable. Therefore, a cache of an information object having a high semantic correlation with the requested information object can be used instead of a cache of the exact requested information object. In this case, caching both of the information objects can be inefficient and redundant. This paper proposes a caching retrieval scheme which considers the semantic information correlation of information objects of nodes for cache retrieval. We illustrate the benefits of considering the semantic information correlation in caching by studying IoT data caching at the edge. Our experiments and analysis show that semantic correlated caching can significantly improve the efficiency, cache hit, and reduce the resource consumption of IoT devices.


2018 ◽  
Vol 38 (1) ◽  
pp. 121-129 ◽  
Author(s):  
Pablo Antonio Pico Valencia ◽  
Juan A. Holgado-Terriza ◽  
Deiver Herrera-Sánchez ◽  
José Luis Sampietro

Recently, the scientific community has demonstrated a special interest in the process related to the integration of the agent-oriented technology with Internet of Things (IoT) platforms. Then, it arises a novel approach named Internet of Agents (IoA) as an alternative to add an intelligence and autonomy component for IoT devices and networks. This paper presents an analysis of the main benefits derived from the use of the IoA approach, based on a practical point of view regarding the necessities that humans demand in their daily life and work, which can be solved by IoT networks modeled as IoA infrastructures. It has been presented 24 study cases of the IoA approach at different domains ––smart industry, smart city and smart health wellbeing–– in order to define the scope of these proposals in terms of intelligence and autonomy in contrast to their corresponding generic IoT applications.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 1083-1086

In recent years everything is connected and passing through the internet, but Internet of Things (IOT), which will change all aspects of our lives and future. While the things are connected to the internet, they will generate the huge amount of information which has to be processed. The information that gathered from various IoT devices has to be recognized and organized according to the environments of their type. To recognize and organize the data gathered from different things, the important task to be played is making things passing through different Data Mining Techniques (DMT). In this article, we mainly focus on analysis of various Data Mining Techniques over the data that has been generated by the IOT Devices which are connected over the internet using DBSCAN Technique. And also performed review over different Data Mining Techniques for Data Analysis


Sign in / Sign up

Export Citation Format

Share Document