scholarly journals LC Impedance Source Bi-Directional Converter with Reduced Capacitor Voltages

Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1062
Author(s):  
Dogga Raveendhra ◽  
Rached Dhaouadi ◽  
Habibur Rehman ◽  
Shayok Mukhopadhyay

This paper proposes an LC (Inductor and Capacitor) impedance source bi-directional DC–DC converter by redesigning after rearranging the reduced number of components of a switched boost bi-directional DC–DC converter. This new converter with a conventional modulation scheme offers several unique features, such as a) a lower number of components and b) reduced voltage stress on the capacitor compared to existing topologies. The reduction of capacitor voltage stress has the potential of improving the reliability and enhancing converter lifespan. An analysis of the proposed converter was completed with the help of a mathematical model and state-space averaging models. The converter performance under different test conditions is compared with the conventional bi-directional DC–DC converter, Z-source converter, discontinuous current quasi Z-source converter, continuous current quasi Z-source converter, improved Z-source converter, switched boost converter, current-fed switched boost converter, and quasi switched boost converter in the Matlab Simulink environment. MATLAB/Simulink results demonstrate that the proposed converter has lesser components count and reduced capacitors’ voltage stresses when compared to the topologies mentioned above. A 24 V to 18 V LC-impedance source bi-directional converter and a conventional bidirectional converter are built to investigate the feasibility and benefits of the proposed topology. Experimental results reveal that capacitor voltage stresses, in the case of proposed topology are reduced by 75.00% and 35.80% in both boost and buck modes, respectively, compared to the conventional converter circuit.

10.29007/m2mq ◽  
2018 ◽  
Author(s):  
Shubham R. Patel ◽  
Gaurang K. Sharma ◽  
Ashish R. Patel

Multilevel inverter allows the production of high voltage with lower harmonic distortion in ac output and it eliminates the need of transformer. With the usage of multilevel inverter, we can get the required ac voltage output from multiple dc voltage rails. One of the disadvantage in it is the unbalancing of dc link capacitor voltage. The basic aim of this paper is the balancing of dc link capacitor voltage in diode-clamped multilevel inverter. There are different approaches which could be used for balancing of the capacitor voltage. In this paper, the method of additional auxiliary circuit in the form of Two-level Boost converter is being adopted to balance the inner capacitor voltages so as to get the required multilevel output. This balancing leads to the reliability in the inverter output voltage and extension in life of capacitor. The simulations for this are being performed in MATLAB SIMULINK® and the result are being analyzed for the same by employing it for different load condition. The scheme thus offer the proper balancing of capacitor voltage.


2019 ◽  
Vol 87 ◽  
pp. 01025
Author(s):  
Shanmugasundaram Ravivarman ◽  
Karuppiah Natarajan ◽  
Reddy B Raja Gopal

This paper presents a boost DC-DC converter topology with non - isolated high gain and output midpoint, to boost the voltage obtained from solar photovoltaic panels. The three-level boost converter is coupled to the output port of the single-switch quadratic boost converter to derive the proposed converter topology. The voltage gain of the proposed converter is greater than that of the classical boost converter. The voltage stress on the switches of the proposed converter is equal to half of the converter output voltage. Static analysis, operating modes, experimental waveforms in continuous current conduction and discontinuous current conduction modes are shown. A 520 W prototype converter was implemented in the laboratory and its results are presented.


Author(s):  
S. Pragaspathy ◽  
Ch. Phani Kumar ◽  
V.S.N. Narasimha Raju ◽  
Kalyan Sagar Kadali ◽  
S. Saravanan

2021 ◽  
Author(s):  
HENRIQUE JAHNKE HOCH ◽  
TIAGO MIGUEL KLEIN FAISTEL ◽  
ADEMIR TOEBE ◽  
ANTóNIO MANUEL SANTOS SPENCER ANDRADE

High step-up DC-DC converters are necessary in photovoltaic energy generation, due the low voltage of the panels source. This article propose the Doubler Output Coupled Inductor converter. This converter is based in boost converter and utilize switched capacitors and a coupled inductor to maximize the static voltage gain. The converter achieve a high voltage gain with low turns ratio in the coupled inductor and an acceptable duty cycle. Can highlight the converter utilize low number of components and have low voltage and current stresses in semiconductors. To validate and evaluate the operation of the converter a 200W prototype is simulated.


Author(s):  
Shima Sadaf ◽  
Nasser Al-Emadi ◽  
Atif Iqbal ◽  
Mohammad Meraj ◽  
Mahajan Sagar Bhaskar

DC-DC power converters are necessary to step-up the voltage or current with high conversion ratio for many applications e.g. photovoltaic and fuel cell energy conversion, uninterruptible power supply, DC microgrid, automobile, high intensity discharged lamp ballast, hybrid vehicle, etc. in order to use low voltage sources. In this project, a modified SIBC (mSIBC) is proposed with reduced voltage stress across active switches. The proposed mSIBC configuration is transformerless and simply derived by replacing one diode of the classical switched inductor structure with an active switch. As a result, mSIBC required low voltage rating active switches, as the total output voltage is shared between two active switches. Moreover, the proposed mSIBC is low in cost, provides higher efficiency and required the same number of components compared to the classical SIBC. The experimental results are presented which validated the theoretical analysis and functionality, and the efficiency of the designed converter is 97.17%. The proposed mSIBC converter provides higher voltage conversion ratio compared to classical converters e.g. boost, buck-boost, cuk, and SEPIC. The newly designed configurations will aid the intermediate power stage between the renewable sources and utility grid or high voltage DC or AC load. Since, the total output voltage is distributed among the two active switches, low voltage rating switches can be employed to design the power circuit of the proposed converter. The classical boost converter or recently proposed switched inductor based boost converter can be replaced by the proposed mSIBC converter in real-time applications such as DC microgrid, DC-DC charger, battery backup system, UPS, EV, an electric utility grid. The proposed power circuitry is cost effective, compact in size, easily diagnostic, highly efficient and reliable.


Author(s):  
R. Palanisamy ◽  
A. Velu ◽  
K. Selvakumar ◽  
D. Karthikeyan ◽  
D. Selvabharathi ◽  
...  

This paper deals the implementation of 3-level output voltage using dual 2-level inverter with control of sub-region based Space Vector Modulation (SR-SVM). Switching loss and voltage stress are the most important issues in multilevel inverters, for keep away from these problems dual inverter system executed. Using this proposed system, the conventional 3-level inverter voltage vectors and switching vectors can be located. In neutral point clamped multilevel inverter, it carries more load current fluctuations due to the DC link capacitors and it requires large capacitors. Based on the sub-region SVM used to control IGBT switches placed in the dual inverter system. The proposed system improves the output voltage with reduced harmonic content with improved dc voltage utilisation. The simulation and hardware results are verified using matlab/simulink and dsPIC microcontroller.


Sign in / Sign up

Export Citation Format

Share Document