scholarly journals Three-Phase PWM Voltage-Source-Inverter Weight Optimization for Aircraft Application Using Deterministic Algorithm

Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1393
Author(s):  
Adrien Voldoire ◽  
Jean-Luc Schanen ◽  
Jean-Paul Ferrieux ◽  
Alexis Derbey ◽  
Cyrille Gautier

In this paper, a design by optimization process is used to size a 10-kW three-phase pulse width modulation (PWM) inverter for aeronautic application. The objective function is the converter weight, which has to be minimized. Sizing constraints are the efficiency, alternating current (AC) and direct current (DC) harmonics, and thermal constraints on all devices. A deterministic algorithm is chosen since it allows obtaining quick results and dealing with a large number of variables. All equations are analytical, in order to comply with this gradient-based optimization strategy, which imposes the derivability of the models. Several optimization results using different AC inductor solutions (iron powder and ferrite) are compared. The optimized converters were built and tested experimentally to verify their performances. Semiconductor and inductor losses were measured accurately using calorimetric test benches. The optimality of the solutions was carefully verified by changing parameters.

Author(s):  
Sony Prakarsa Putra ◽  
Zulwisli Zulwisli

This study aims to create a PWM inverter that can drive the Brushless Unidirectional Flow Machine (MASTS). PWM inverters are intended to correct deficiencies in six-step inverters. Inverter is a circuit that is used to convert a DC voltage source into an AC voltage with a certain frequency. The use of inverters is found in electric vehicles. The system often used to control an inverter is a Pulse Width Modulation (PWM) based control, where pulse width is used to regulate speed. The inverter is tested using 3 pairs of mosfets as a switch to control the three-phase output of the inverter. In the inverter, PWM is used to adjust the width of the frequency pulse that will be given to the mosfet. This research used 3 variations of duty cycle 30%, 60%, 90% to determine the effect of MASTS speed on PWM by using a PWM inverter. The results of this study the speed of MASTS can be influenced by changes in duty cycle, with increasing value of the duty cycle, the faster the speed of MASTS, and vice versa. Keywords:Mosfet, Sensor Hall, MASTS, PWM, Inverter.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 282
Author(s):  
Seon-Ik Hwang ◽  
Jang-Mok Kim

The common-mode voltage (CMV) generated by the switching operation of the pulse width modulation (PWM) inverter leads to bearing failure and electromagnetic interference (EMI) noises. To reduce the CMV, it is necessary to reduce the magnitude of dv/dt and change the frequency of the CMV. In this paper, the range of the CMV is reduced by using opposite triangle carrier for ABC and XYZ winding group, and the change in frequency in the CMV is reduced by equalizing the dwell time of the zero voltage vector on ABC and XYZ winding group of dual three phase motor.


2017 ◽  
Vol 27 (2) ◽  
pp. 45-60
Author(s):  
V. Jegathesan

This paper presents an efficient and reliable Genetic Algorithm based solution for Selective Harmonic Elimination (SHE) switching pattern. This method eliminates considerable amount of lower order line voltage harmonics in Pulse Width Modulation (PWM) inverter. Determination of pulse pattern for the elimination of some lower order harmonics of a PWM inverter necessitates solving a system of nonlinear transcendental equations. Genetic Algorithm is used to solve nonlinear transcendental equations for PWM-SHE. Many methods are available to eliminate the higher order harmonics and it can be easily removed. But the greatest challenge is to eliminate the lower order harmonics and this is successfully achieved using Genetic Algorithm without using Dual transformer. Simulations using MATLABTM and Powersim with experimental results are carried out to validate the solution. The experimental results show that the harmonics up to 13th were totally eliminated. 


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3251
Author(s):  
Suroso ◽  
Daru Tri Nugroho ◽  
Toshihiko Noguchi

This paper presents a new configuration of voltage source inverter with a simplified circuit for generating five-level pulse width modulation (PWM) voltage waveform. Compared with conventional inverter configuration, this circuit is drastically able to simplify the structure and reduce the required number of active switch components. The new inverter circuit is very suitable for the use of open-end connection loads such as open-end winding ac motor drive application. Instead of using separated dc power sources, the new inverter circuit configuration is also possible to utilize only one dc voltage source, so the power supply circuits can be made simpler. Furthermore, to reduce ripples of dc capacitor voltages, the voltage stabilizing circuit of capacitors at the input side was proposed and applied. The stabilizing circuit is capable to work reducing the size of dc capacitors, and maintaining voltage stability of capacitors through charging and discharging operation modes. The working principles of inverter circuit were evaluated and examined by means of computer simulations using PSIM software. In addition, experimental test results of the prototype were also provided. Test results proved that the new five-level PWM inverter operated well generating five-level output waveform with smaller distortion and less voltage ripples of dc capacitors.


Author(s):  
Dr. Aleck W. Leedy, P.E. ◽  
◽  
Tanner Grider ◽  
Rebekah Priddy ◽  
◽  
...  

A three-phase voltage source inverter driven induction motor dynamic model developed using Simulink / MATLAB is presented. The presented model is derived from the d-q motor model. A modular approach is used in the construction of the motor-drive system model. The model presented is useful for studying both the steady-state and transient behavior of the motor drive system. The developed model enables the user to access all parameters of interest. Modifications can be made to the system model in order for it to be used with other motor drive system topologies. The model has benefits for use by undergraduate student researchers, and professors when used as a teaching tool in undergraduate courses.


Author(s):  
Jyothi B ◽  
M.Venugopala Rao

<p>Multiphase (more than three phases) is very much popular due to their eminent features compared to conventional three-phase counter parts. In order to drive the multiphase machine, it requires same phase input w.r.t the no of phases at the output. This paper mainly focuses on five phase, because even after failure of one phase, the performance does not degraded much. Voltage source inverters (VSIs) are used to feed the induction motor. voltage source inverters (VSIs) switches are ON and OFF precisely to control the output. In order to implement harmonic waveform characteristic, carrier based PWM (pulse width modulation) is performed. By using with and without third harmonic injection machine torque is highly improved. Using MATLAB software, the simulation results are presented in the form of computer traces and high traded performance of the machine are discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document