scholarly journals Four-Level Hysteresis-Based DTC for Torque Capability Improvement of IPMSM Fed by Three-Level NPC Inverter

Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1558 ◽  
Author(s):  
Samer Saleh Hakami ◽  
Kyo-Beum Lee

Direct torque control (DTC) is considered one of the simplest and fastest control strategies used in motor drives. However, it produces large torque and flux ripples. Replacing the conventional two-level hysteresis torque controller (HTC) with a four-level HTC for a three-level neutral-point clamped (NPC) inverter can reduce the torque and flux ripples in interior permanent magnet synchronous motor (IPMSM) drives. However, the torque will not be controlled properly within the upper HTC bands when driving the IPMSM in the medium and high-speed regions. This problem causes the stator current to drop, resulting in poor torque control. To resolve this problem, a simple algorithm based on a torque error average calculation is proposed. Firstly, the proposed algorithm reads the information of the calculated torque and the corresponding torque reference to calculate the torque error. Secondly, the average value of torque error is calculated instantaneously as the reference torque changes. Finally, the average value of the torque error is used to indicate the operation of the proposed algorithm without the need for motor speed information. By using the proposed algorithm, the torque can be controlled well in all speed regions, and thus, a better stator current waveform can be obtained. Simulation and experimental results validate the effectiveness of the proposed method.

2012 ◽  
Vol 220-223 ◽  
pp. 1040-1043
Author(s):  
Hong Cui ◽  
You Qing Gao

High-speed permanent magnet synchronous motor (PMSM) is more and more widely applied in high precision processing and high-performance machines. It is very important to research practical control strategy for the stability operation of the high-speed PMSM. The strategy of sensorless grey prediction fuzzy direct torque control (DTC) is proposed which is suitable for high-speed PMSM control system. The method of prediction fuzzy control based on DTC is used to gain the flux, torque and flux oriented angle through the prediction model of the motor parameters. The best control scheme is gained by fuzzy reasoning to overcome the lag on the system making the adjustment process stable and realizing accurate predictive control. Thereby, the dynamic response of the system, anti-disturbance capability and control accuracy can be improved.


2013 ◽  
Vol 321-324 ◽  
pp. 1679-1685
Author(s):  
Jun Li ◽  
Jia Jun Yu ◽  
Zhenxing Chen

This paper mainly reviews the development of permanent magnet synchronous motor drive system. It presents several approaches of PMSM control strategies, including control strategies based on classical control, modern control and intelligent control. Theoretical background briefly describes the properties of these control techniques. Among these control strategies, vector control and direct torque control are considered as the mature methods for PMSM motors control currently. Advanced control strategies, with adaptive control, variable structure control and intelligent control included, improve the performance of PMSM in some respects, such as variations of plant parameters sensitivity, external disturbance and so on. It shows that the researches in this area are still a popular research topic. Finally, this paper prospected the foreground of the control strategies for PMSM.


2021 ◽  
Vol 54 (2) ◽  
pp. 345-354
Author(s):  
Fayçal Mehedi ◽  
Habib Benbouhenni ◽  
Lazhari Nezli ◽  
Djamel Boudana

In this work, the direct torque control (DTC) is applied to the five-phase permanent magnet synchronous motor (FP-PMSM). The DTC method based on classical space vector pulse width modulation (SVPWM) is a common solution used to overcome traditional problems; such as stator flux ripple, electromagnetic torque ripple and gives more total harmonic distortion (THD) of the stator current. The actual paper is based on improving the performance of DTC-SVPWM by using the feedforward neural networks (FNNs) instead of the proportional-integral (PI) regulators and hysteresis comparators (HCs) of the conventional SVPWM strategy. This algorithm can solve the traditional PI regulators and HCs problems which are represented in responses dynamic and reduce the torque ripple, flux ripple, and the THD of stator current of FP-PMSM drives. The proposed strategy was tested in different tests with simulation using Matlab software.


2013 ◽  
Vol 756-759 ◽  
pp. 627-631
Author(s):  
Zhao Jun Meng ◽  
Rui Chen ◽  
Yue Jun An

The position sensorless control method based on direct torque control was carried out aiming at the interior permanent magnet synchronous motor (IPMSM) in this paper. To the consideration of electric vehicle space is limited, in order to reduce the controller size to save space, this paper studied the sensorless control. Meanwhile, in order to improve the control rapidity as much as possible of the electric vehicle, take direct torque control as a control method of the driving motor. Finally, designed the sensorless direct torque controller and studied its simulation. Simulation results show that the control system have good dynamic and static characteristics in the full speed range.


2013 ◽  
Vol 446-447 ◽  
pp. 497-502
Author(s):  
Xiao Feng Ding ◽  
Zhen Li

Interior permanent magnet synchronous motor (IPMSM) systems are vulnerable to uncontrolled generation (UCG) when the inverter switches loss their drive signals suddenly during flied weakening high speed operation. At this point, uncontrolled rectifier is composed by freewheel diodes in the inverter, the current comes from the motor through the rectifier, and then charges the battery. This paper develops a simple analytical model of this system firstly, and then carries out the simulation of UCG transient process to investigate the impact of the motor speed, battery capacity and other factors on UCG and feedback-power obtained throughout the process. Moreover, circuit improvement is presented in order to avoid destruction risk of the battery, motor, inverter and other relevant components during UCG.


Author(s):  
Hanaa Elsherbiny ◽  
Mohamed Kamal Ahmed ◽  
Mahmoud Elwany

This paper presents a detailed analysis and comparative investigation for the torque control techniques of interior permanent magnet synchronous motor (IPMSM) for electric vehicles (EVs). The study involves the field-oriented control (FOC), direct torque control (DTC), and model predictive direct torque control (MPDTC) techniques. The control aims to achieve vehicle requirements that involve maximum torque per ampere (MTPA), minimum torque ripples, maximum efficiency, fast dynamics, and wide speed range. The MTPA is achieved by the direct calculation of reference flux-linkage as a function of commanded torque. The calculation of reference flux-linkage is done online by the solution of a quartic equation. Therefore, it is a more practical solution compared to look-up table methods that depend on machine parameters and require extensive offline calculations in advance. For realistic results, the IPMSM model is built considering iron losses. Besides, the IGBTs and diodes losses (conduction and switching losses) in power inverter are modeled and calculated to estimate properly total system efficiency. In addition, a bidirectional dc-dc boost converter is connected to the battery to improve the overall drive performance and achieve higher efficiency values. Also, instead of the conventional PI controller which suffers from parameter variation, the control scheme includes an adaptive fuzzy logic controller (FLC) to provide better speed tracking performance. It also provides a better robustness against disturbance and uncertainties. Finally, a series of simulation results with detailed analysis are executed for a 60 kW IPMSM. The electric vehicle (EV) parameters are equivalent to Nissan Leaf 2018 electric car.


Sign in / Sign up

Export Citation Format

Share Document