scholarly journals DiPLIP: Distributed Parallel Processing Platform for Stream Image Processing Based on Deep Learning Model Inference

Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1664
Author(s):  
Yoon-Ki Kim ◽  
Yongsung Kim

Recently, as the amount of real-time video streaming data has increased, distributed parallel processing systems have rapidly evolved to process large-scale data. In addition, with an increase in the scale of computing resources constituting the distributed parallel processing system, the orchestration of technology has become crucial for proper management of computing resources, in terms of allocating computing resources, setting up a programming environment, and deploying user applications. In this paper, we present a new distributed parallel processing platform for real-time large-scale image processing based on deep learning model inference, called DiPLIP. It provides a scheme for large-scale real-time image inference using buffer layer and a scalable parallel processing environment according to the size of the stream image. It allows users to easily process trained deep learning models for processing real-time images in a distributed parallel processing environment at high speeds, through the distribution of the virtual machine container.

Author(s):  
Tossaporn Santad ◽  
Piyarat Silapasupphakornwong ◽  
Worawat Choensawat ◽  
Kingkarn Sookhanaphibarn

2021 ◽  
Author(s):  
Cemanur Aydinalp ◽  
Sulayman Joof ◽  
Mehmet Nuri Akinci ◽  
Ibrahim Akduman ◽  
Tuba Yilmaz

In the manuscript, we propose a new technique for determination of Debye parameters, representing the dielectric properties of materials, from the reflection coefficient response of open-ended coaxial probes. The method retrieves the Debye parameters using a deep learning model designed through utilization of numerically generated data. Unlike real data, using synthetically generated input and output data for training purposes provides representation of a wide variety of materials with rapid data generation. Furthermore, the proposed method provides design flexibility and can be applied to any desired probe with intended dimensions and material. Next, we experimentally verified the designed deep learning model using measured reflection coefficients when the probe was terminated with five different standard liquids, four mixtures,and a gel-like material.and compared the results with the literature. Obtained mean percent relative error was ranging from 1.21±0.06 to 10.89±0.08. Our work also presents a large-scale statistical verification of the proposed dielectric property retrieval technique.


2019 ◽  
Author(s):  
Mojtaba Haghighatlari ◽  
Gaurav Vishwakarma ◽  
Mohammad Atif Faiz Afzal ◽  
Johannes Hachmann

<div><div><div><p>We present a multitask, physics-infused deep learning model to accurately and efficiently predict refractive indices (RIs) of organic molecules, and we apply it to a library of 1.5 million compounds. We show that it outperforms earlier machine learning models by a significant margin, and that incorporating known physics into data-derived models provides valuable guardrails. Using a transfer learning approach, we augment the model to reproduce results consistent with higher-level computational chemistry training data, but with a considerably reduced number of corresponding calculations. Prediction errors of machine learning models are typically smallest for commonly observed target property values, consistent with the distribution of the training data. However, since our goal is to identify candidates with unusually large RI values, we propose a strategy to boost the performance of our model in the remoter areas of the RI distribution: We bias the model with respect to the under-represented classes of molecules that have values in the high-RI regime. By adopting a metric popular in web search engines, we evaluate our effectiveness in ranking top candidates. We confirm that the models developed in this study can reliably predict the RIs of the top 1,000 compounds, and are thus able to capture their ranking. We believe that this is the first study to develop a data-derived model that ensures the reliability of RI predictions by model augmentation in the extrapolation region on such a large scale. These results underscore the tremendous potential of machine learning in facilitating molecular (hyper)screening approaches on a massive scale and in accelerating the discovery of new compounds and materials, such as organic molecules with high-RI for applications in opto-electronics.</p></div></div></div>


2020 ◽  
Vol 8 (6) ◽  
pp. 5730-5737

Digital Image Processing is application of computer algorithms to process, manipulate and interpret images. As a field it is playing an increasingly important role in many aspects of people’s daily life. Even though Image Processing has accomplished a great deal on its own, nowadays researches are being conducted in using it with Deep Learning (which is part of a broader family, Machine Learning) to achieve better performance in detecting and classifying objects in an image. Car’s License Plate Recognition is one of the hottest research topics in the domain of Image Processing (Computer Vision). It is having wide range of applications since license number is the primary and mandatory identifier of motor vehicles. When it comes to license plates in Ethiopia, they have unique features like Amharic characters, differing dimensions and plate formats. Although there is a research conducted on ELPR, it was attempted using the conventional image processing techniques but never with deep learning. In this proposed research an attempt is going to be made in tackling the problem of ELPR with deep learning and image processing. Tensorflow is going to be used in building the deep learning model and all the image processing is going to be done with OpenCV-Python. So, at the end of this research a deep learning model that recognizes Ethiopian license plates with better accuracy is going to be built.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1010
Author(s):  
Nouar AlDahoul ◽  
Hezerul Abdul Karim ◽  
Abdulaziz Saleh Ba Wazir ◽  
Myles Joshua Toledo Tan ◽  
Mohammad Faizal Ahmad Fauzi

Background: Laparoscopy is a surgery performed in the abdomen without making large incisions in the skin and with the aid of a video camera, resulting in laparoscopic videos. The laparoscopic video is prone to various distortions such as noise, smoke, uneven illumination, defocus blur, and motion blur. One of the main components in the feedback loop of video enhancement systems is distortion identification, which automatically classifies the distortions affecting the videos and selects the video enhancement algorithm accordingly. This paper aims to address the laparoscopic video distortion identification problem by developing fast and accurate multi-label distortion classification using a deep learning model. Current deep learning solutions based on convolutional neural networks (CNNs) can address laparoscopic video distortion classification, but they learn only spatial information. Methods: In this paper, utilization of both spatial and temporal features in a CNN-long short-term memory (CNN-LSTM) model is proposed as a novel solution to enhance the classification. First, pre-trained ResNet50 CNN was used to extract spatial features from each video frame by transferring representation from large-scale natural images to laparoscopic images. Next, LSTM was utilized to consider the temporal relation between the features extracted from the laparoscopic video frames to produce multi-label categories. A novel laparoscopic video dataset proposed in the ICIP2020 challenge was used for training and evaluation of the proposed method. Results: The experiments conducted show that the proposed CNN-LSTM outperforms the existing solutions in terms of accuracy (85%), and F1-score (94.2%). Additionally, the proposed distortion identification model is able to run in real-time with low inference time (0.15 sec). Conclusions: The proposed CNN-LSTM model is a feasible solution to be utilized in laparoscopic videos for distortion identification.


2021 ◽  
Author(s):  
Gaurav Chachra ◽  
Qingkai Kong ◽  
Jim Huang ◽  
Srujay Korlakunta ◽  
Jennifer Grannen ◽  
...  

Abstract After significant earthquakes, we can see images posted on social media platforms by individuals and media agencies owing to the mass usage of smartphones these days. These images can be utilized to provide information about the shaking damage in the earthquake region both to the public and research community, and potentially to guide rescue work. This paper presents an automated way to extract the damaged building images after earthquakes from social media platforms such as Twitter and thus identify the particular user posts containing such images. Using transfer learning and ~6500 manually labelled images, we trained a deep learning model to recognize images with damaged buildings in the scene. The trained model achieved good performance when tested on newly acquired images of earthquakes at different locations and ran in near real-time on Twitter feed after the 2020 M7.0 earthquake in Turkey. Furthermore, to better understand how the model makes decisions, we also implemented the Grad-CAM method to visualize the important locations on the images that facilitate the decision.


2021 ◽  
Author(s):  
Jannes Münchmeyer ◽  
Dino Bindi ◽  
Ulf Leser ◽  
Frederik Tilmann

&lt;p&gt;&lt;span&gt;The estimation of earthquake source parameters, in particular magnitude and location, in real time is one of the key tasks for earthquake early warning and rapid response. In recent years, several publications introduced deep learning approaches for these fast assessment tasks. Deep learning is well suited for these tasks, as it can work directly on waveforms and &lt;/span&gt;&lt;span&gt;can&lt;/span&gt;&lt;span&gt; learn features and their relation from data.&lt;/span&gt;&lt;/p&gt;&lt;p&gt;&lt;span&gt;A drawback of deep learning models is their lack of interpretability, i.e., it is usually unknown what reasoning the network uses. Due to this issue, it is also hard to estimate how the model will handle new data whose properties differ in some aspects from the training set, for example earthquakes in previously seismically quite regions. The discussions of previous studies usually focused on the average performance of models and did not consider this point in any detail.&lt;/span&gt;&lt;/p&gt;&lt;p&gt;&lt;span&gt;Here we analyze a deep learning model for real time magnitude and location estimation through targeted experiments and a qualitative error analysis. We conduct our analysis on three large scale regional data sets from regions with diverse seismotectonic settings and network properties: Italy and Japan with dense networks &lt;/span&gt;&lt;span&gt;(station spacing down to 10 km)&lt;/span&gt;&lt;span&gt; of strong motion sensors, and North Chile with a sparser network &lt;/span&gt;&lt;span&gt;(station spacing around 40 km) &lt;/span&gt;&lt;span&gt;of broadband stations. &lt;/span&gt;&lt;/p&gt;&lt;p&gt;&lt;span&gt;We obtained several key insights. First, the deep learning model does not seem to follow the classical approaches for magnitude and location estimation. For magnitude, one would classically expect the model to estimate attenuation, but the network rather seems to focus its attention on the spectral composition of the waveforms. For location, one would expect a triangulation approach, but our experiments instead show indications of a fingerprinting approach. &lt;/span&gt;Second, we can pinpoint the effect of training data size on model performance. For example, a four times larger training set reduces average errors for both magnitude and location prediction by more than half, and reduces the required time for real time assessment by a factor of four. &lt;span&gt;Third, the model fails for events with few similar training examples. For magnitude, this means that the largest event&lt;/span&gt;&lt;span&gt;s&lt;/span&gt;&lt;span&gt; are systematically underestimated. For location, events in regions with few events in the training set tend to get mislocated to regions with more training events. &lt;/span&gt;&lt;span&gt;These characteristics can have severe consequences in downstream tasks like early warning and need to be taken into account for future model development and evaluation.&lt;/span&gt;&lt;/p&gt;


2021 ◽  
pp. 132-143
Author(s):  
Akihiro Sugiura ◽  
Yoshiki Itazu ◽  
Kunihiko Tanaka ◽  
Hiroki Takada

Critical Care ◽  
2019 ◽  
Vol 23 (1) ◽  
Author(s):  
Soo Yeon Kim ◽  
Saehoon Kim ◽  
Joongbum Cho ◽  
Young Suh Kim ◽  
In Suk Sol ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document