scholarly journals Wire Mesh Dampers for Semi-Floating Ring Bearings in Automotive Turbochargers: Measurements of Structural Stiffness and Damping Parameters

Energies ◽  
2018 ◽  
Vol 11 (4) ◽  
pp. 812 ◽  
Author(s):  
Keun Ryu ◽  
Howon Yi

The current work introduces a new semi-floating ring bearing (SFRB) system developed for improving the rotordynamic and vibration performance of automotive turbochargers (TCs) at extreme operation conditions, such as high temperature, severe external force excitation, and large rotor imbalance. The new bearing design replaces outer oil films, i.e., squeeze film dampers (SFDs), in TC SFRBs with wire mesh dampers (WMDs). This SFRB configuration integrating WMDs aims to implement reliable mechanical components, as an inexpensive and simple alternative to SFDs, with consistent and superior damping capability, as well as predictable forced performance. Since WMDs are in series with the inner oil films of SFRBs, experimentally determined force coefficients of WMDs are of great importance in the design process of TC rotor-bearing systems (RBSs). Presently, the measurements of applied static load and ensuing deflection determine the structural stiffnesses of the WMDs. The WMD damping parameters, including dissipated energy, loss factor, and dry friction coefficient, are estimated from the area of the distinctive local hysteresis loop of the load versus WMD displacement data recorded during consecutive loading-unloading cycles as a function of applied preload with a constant amplitude of motion. The changes in WMD loss factor and dry friction coefficient due to increases in preload are more significant for the WMDs with lower density. The present work shows, to date, the most comprehensive measurements of static load characteristics on the WMDs for application into small automotive TCs. More importantly, the extensive test measurements of WMD deflection versus increasing static loads will aid to anchor predictions of future computation model.

Author(s):  
Luis San Andrés ◽  
Wonbae Jung

Despite their many advantages, bump-type foil bearings (BFBs) have issues of dry-friction during sliding contact at rotor start/stop cycles. To prevent premature wear of both shaft and the BFB, the proper selection and application of a coating on the top foil is of importance to ensure bearing long life. This thesis presents measurements characterizing the static and dynamic load performance of a Generation I BFB having uncoated and coated (VN, TiSiN, MoS2) top foils. The bearing, with length L and diameter D = 38 mm, integrates a 360° 0.127 mm thick top foil made of Inconel X-750, and a 27 bumps strip layer, 0.47 mm in height, made of the same stock as for the top foils. The VN and TiSiN coating, 0.005 mm thick, applies to the front and back surfaces of a top foil. The MoS2 coating, 0.020 mm thick, is sacrificial. The tests were conducted at room temperature (21°C), determined by the existing test facility. The dry-sliding torque (T) increases linearly with an increase in applied static load, max W/(LD) = 25.6 kPa. The bearing with a VN coated top foil shows the largest turning torque. The dry-sliding friction factor f = T/(½WD) decreases as the specific load (W/(LD)) increases. As expected, journal rotation towards the top foil free end (clockwise) produces a larger f than for rotations in reverse. A test-rig records the BFB drag torque during rotor acceleration and deceleration procedures to/from 70 krpm (138 m/s). The vertical load applied into a bearing equals W/(LD) = −8.0 kPa, 0 kPa and 8.0 kPa. In general, the bearing with a coated top foil shows a lesser drag torque than that of the uncoated top foil bearing. Among the coated foil bearings, the one with VN coating shows the highest drag torque, whereas another with MoS2 coating shows the lowest. When the rotor starts up, the dry-sliding friction coefficient (f) of the bearing with VN coating is ∼0.4 while f for the bearing with TiSiN coating is 0.3∼0.4. The uncoated bearing shows the largest f ∼0.6, and the MoS2 coated one has the lowest f = 0.2∼0.3. The drag torque, increasing with an increase in applied static load, is small when the rotor is airborne (lesser than ∼10% of peak torque). Dynamic load tests spanning excitation frequencies (ω) from 200 Hz to 400 Hz serve to identify force coefficients for the test BFBs with a specific load of 16 kPa and operating with shaft speed at 50 krpm (833 Hz). Baseline measurements correspond to a null applied load and no shaft rotation. The test bearings show a remarkable behavior with nearly isotropic direct coefficients and very small cross-coupled ones. The bearing direct stiffnesses (K) increase with frequency whereas the direct damping coefficients (C) quickly decrease. The bearing material loss factor, γ = ωC/K, represents best the BFB ability to dissipate mechanical energy. Over the excitation frequency range, γ = 0.34, 0.28, and 0.12 for the uncoated top foil, VN coated and TiSiN coated bearings. The test data show the bearing loss factor correlates with the dry friction coefficient as γ ∼ (0.71 × f) at a rotor speed of 50 krpm (95 m/s). Since the top foils with VN or TiSiN are coated on both sides, kinetic friction between the back of a top foil and the bumps’ crests likely lessens during sustained contact.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 660
Author(s):  
Dariusz Jędrzejczyk ◽  
Elżbieta Szatkowska

The analyzed topic refers to the wear resistance and friction coefficient changes resulting from heat treatment (HT) of a hot-dip zinc coating deposited on steel. The aim of research was to evaluate the coating behavior during dry friction after HT as a result of microstructure changes and increase the coating hardness. The HT parameters should be determined by taking into consideration, on the one hand, coating wear resistance and, on the other hand, its anticorrosion properties. A hot-dip zinc coating was deposited in industrial conditions (according EN ISO 10684) on disc-shaped samples and the chosen bolts. The achieved results were assessed on the basis of tribological tests (T11 pin-on-disc tester, Schatz®Analyse device, Sindelfingen, Germany), microscopic observations (with the use of optical and scanning microscopy), EDS (point and linear) analysis, and microhardness measurements. It is proved that properly applied HT of a hot-dip zinc coating results in changes in the coating’s microstructure, hardness, friction coefficient, and wear resistance.


2010 ◽  
Vol 654-656 ◽  
pp. 2763-2766 ◽  
Author(s):  
Li Wen Mu ◽  
Xin Feng ◽  
Yi Jun Shi ◽  
Huai Yuan Wang ◽  
Xiao Hua Lu

The tribological properties of polyimide (PI) composites reinforced with graphite or MoS2 sliding in liquid alkali and water as well as dry friction were investigated using a ring-on-ring tester. The results show that the friction coefficient (μ) and wear rate (W) for both graphite/PI and MoS2/PI composites in different liquid mediums are μdry>μwater >μalkali and Wwater>Wdry >Walkali. Results also indicate that the friction coefficient and wear rate of the PI composites filled with different solid lubricants are μMoS2 >μgraphite and W MoS2 >Wgraphite in different liquid mediums. In addition, the hydrophobic inorganic fillers are fit for the reinforcement of polymer-based composites sliding in liquid mediums. It is also concluded from the authors’ work that the wear rate and friction coefficient of polymer-based (such as PI, PTFE) composites in the alkali lubricated conditions is lowest among all the friction conditions. This may be attributed to the ionic hydration in the alkaline solution.


2010 ◽  
Vol 02 (02) ◽  
pp. 281-304 ◽  
Author(s):  
N. PEYRET ◽  
J.-L. DION ◽  
G. CHEVALLIER ◽  
P. ARGOUL

The friction between interfaces at bolted joints plays a major role in the damping of structures. This paper deals with the energy losses caused by micro-slips in the joints. The aim of this study is to define in an analytical way these energy dissipation mechanisms which we examine through the analysis of a new benchmark: the flexural vibration of a clamped-clamped beam with original positioning of the interfaces. The joints exhibit the behavior of an interface under constant and uniform normal stress. The stress and strain values are computed at the joints under the assumption of quasi-static motion. This model allows us to understand the evolution of the slip and stick regions along the joint interfaces during the loading process. The expressions of the strain and stress fields during each phase of the loading process are derived. These lead to the quantification of the dissipated energy within the interface. Using this formula, a nonlinear loss factor can then be computed. In the final part of the paper, the dynamic response of the beam is calculated using this nonlinear loss factor.


2014 ◽  
Vol 997 ◽  
pp. 321-324
Author(s):  
Wei Zheng ◽  
Guang Chun Wang ◽  
Bing Tao Tang ◽  
Xiao Juan Lin ◽  
Yan Zhi Sun

After modifying the Wahime/Bay friction model, a new friction model suitable for micro-forming process without lubrication is established. In this model, it is shows that the friction coefficient is a function of strain hardening exponent, the normal pressure and the initial yield stress of material. Based on the experimental data, the micro-upsetting process is simulated using the proposed friction model. The simulation results are used to investigate the size effect on the dry friction behavior. It is found that the Coulomb’s friction coefficient is dropping with miniaturization of specimens when the amount of reduction is not too large.


Author(s):  
Nicolas Peyret ◽  
Gaël Chevallier ◽  
Jean-Luc Dion

In structural dynamics, the prediction of damping remains the biggest challenge. This paper deals with the energy losses caused by micro-slip in a nominally planar interface of a structure. This paper proposes an analytical and experimental study of flexural vibrations of a clamped-clamped beam with innovative position of the interfaces. The objective of this test bench is to characterize the global rheology of the interface. The proposed model aims to characterize this rheology based on local settings of the interface. First, the test bench is described and the choice of the position of the interface is justified. The experimental bench and the dynamic behavior of this structure are presented. We propose to illustrate the mechanism of energy losses by micro-slip by making a comparison between the behavior of a “monolithic” beam and a sectioned beam. Secondly, a modeling of the interface taking into account the surface defect is presented. The energy dissipated by friction in the interface is calculated during a loading cycle. This leads to a computation of the dissipated energy and thus to a nonlinear loss factor. Finally, we confront the loss factor calculated analytically and the measured one.


2019 ◽  
pp. 34-37
Author(s):  
Viktor Mikhailovich Yurov ◽  
Sergei Alekseevich Guchenko

In this paper, the authors propose a new approach to the consideration of the friction phenomenon in HEAs and, in particular, dry friction. An equation is obtained that shows the nonlinear dependence of the friction coefficient on Gibbs energy G0, on temperature T, on the concentration of the number of electrons N and which allows predicting the formation of high entropy alloys and coatings.


2012 ◽  
Vol 3 (3) ◽  
pp. 181-190
Author(s):  
G. Fledrich ◽  
R. Keresztes ◽  
L. Zsidai

The zirconium dioxide as basic material is suitable to machine by tool with regular edge derivingfrom lower ceramic hardness and from other characteristics so in case of piece production or small – andmedium series production, at quick prototype production can become potential material alike. The aims tocompare the arising frictional characteristics in case of dry friction condition in case of ceramic – steelsurface pairs machined with different sets. We have developed for an equipment to carry out tribologicaltests. During the test we pressure the steel counter face with determined normal direction force thecasing surface of the rotating ceramic specimen and in the meantime we measure the value of the frictionforce with force meter cell. We have calculated the friction coefficient characterizing the system from thenormal direction force and the friction force as well as we measured the wear of the steel specimen andits deformation.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 635 ◽  
Author(s):  
Fang Han ◽  
Huaixing Wen ◽  
Jianjian Sun ◽  
Wei Wang ◽  
Yalong Fan ◽  
...  

This paper concerns a comparative study on the tribological properties of Si3N4-10 vol% hBN bearing on GCr15 steel under seawater lubrication and dry friction and fresh-water lubrication by using a pin-on-disc tribometer. The results showed that the lower friction coefficient (around 0.03) and wear rate (10−6 mm/Nm) of SN10/GCr15 tribopair were obtained under seawater condition. This might be caused by the comprehensive effects of hydrodynamics and boundary lubrication of surface films formed after the tribo-chemical reaction. Despite SN10/GCr15 tribopair having 0.07 friction coefficient in the pure-water environment, the wear mechanismsits were dominated by the adhesive wear and abrasive wear under the dry friction conditions, and delamination, plowing, and plastic deformation occured on the worn surface. The X-ray photoelectron spectroscopy analysis indicated that the products formed after tribo-chemaical reaction were Fe2O3, SiO2, and B2O3 and small amounts of salts from the seawater, and it was these deposits on the worn surface under seawater lubrication conditions that, served to lubricate and protect the wear surface.


Sign in / Sign up

Export Citation Format

Share Document