Tribology research of the turned zirconium-dioxide ceramics

2012 ◽  
Vol 3 (3) ◽  
pp. 181-190
Author(s):  
G. Fledrich ◽  
R. Keresztes ◽  
L. Zsidai

The zirconium dioxide as basic material is suitable to machine by tool with regular edge derivingfrom lower ceramic hardness and from other characteristics so in case of piece production or small – andmedium series production, at quick prototype production can become potential material alike. The aims tocompare the arising frictional characteristics in case of dry friction condition in case of ceramic – steelsurface pairs machined with different sets. We have developed for an equipment to carry out tribologicaltests. During the test we pressure the steel counter face with determined normal direction force thecasing surface of the rotating ceramic specimen and in the meantime we measure the value of the frictionforce with force meter cell. We have calculated the friction coefficient characterizing the system from thenormal direction force and the friction force as well as we measured the wear of the steel specimen andits deformation.

Author(s):  
LiQin Wang ◽  
JianWei Sun ◽  
Le Gu

The tribological performance of Polyetherimide (PEI) composites filled with different Polytetrafluoroethylene (PTFE) content was comparatively evaluated on MM-200 test rig in block-on-ring configuration under dry friction condition. The microstructures of worn surfaces, fractured surfaces and wear mechanisms of the PEI composite were examined under scanning electron microscope (SEM). The variations of elastic modulus and surface hardness with variation in composition were also investigated. The results showed that under conditions of dry friction the PTFE can lower the friction coefficient and reduce wear of the PEI composites. When filled with 10 wt. % PTFE, the composite had the lowest wear rate. For PEI filled with 5wt. % PTFE the friction coefficient was about 0.3 and remained comparatively stable with increase of the PTFE content.


2016 ◽  
Vol 817 ◽  
pp. 13-18
Author(s):  
Celina Jagiełowicz-Ryznar

The results of crankshaft forced vibration calculations, including the dry friction force which can be formed in the viscous damper bearing sliding, were presented. This problem concerns the big dampers used in the marine engines. The friction force influence is presented using the function {sign}. Low values of friction coefficient, corresponding to the conditions similar to the real ones, were assumed. In the range of tested value, it was found that the vibration increases linearly, and system free vibration frequency doesn’t change practically.


2018 ◽  
Vol 913 ◽  
pp. 205-211
Author(s):  
Dong Mei Liu ◽  
Qiang Song Wang ◽  
Wei Yuan ◽  
Xu Jun Mi

A comparative study on the friction and wear properties of three kinds of copper alloys, including Cu-Ni based, Cu-Al and Cu-Be alloys was carried out in this study. The friction pair was stainless steel, and both dry and MoS2 lubrication friction experiments were investigated. During the experiments, different loads were chosen for different alloys. It was found that under dry friction condition, the friction coefficients of both Cu-Ni based and Cu-Al alloys did not change as the loads changes, whereas the friction coefficient of Cu-Be alloy increased as the loads increases. Under lubrication friction condition, the friction coefficients of all three alloys did not change as the load changes. The results show that the dry friction coefficient of Cu-Ni based alloy was the largest (0.74), the Cu-Al alloy next (0.60), and the Cu-Be alloy had the smallest dry friction coefficient (0.54). The lubrication friction coefficient of Cu-Ni based and Cu-Be was equal and relatively smaller (0.12), whereas the Cu-Al alloy had a relative larger lubrication friction coefficient (0.27). The microstructure observations were consistent with the friction and wear performance, and the SEM results show that different wear mechanisms were dominated for different alloys.


2006 ◽  
Vol 113 ◽  
pp. 301-306
Author(s):  
Bronius Bakšys ◽  
Nomeda Puodziuniene

On the basis of the dynamic model of vibratory alignment the main features of the vibrational assembly process are investigated. The regularities of non−impact alignment, when an immovable part is excited in two perpendicular directions, are defined. It is revealed that during the vibrational alignment the movable part can move from static till dynamic equilibrium position. The distance between these two positions defines allowable error of mutual positioning of the parts subject to the assembly, when the unhindered parts insertion is still possible. On the basis of the dynamic model of vibratory displacement the regularities of a body displacement under controlled dry friction force at a particular time interval is examined. If elastic vibrations are excited, dry friction coefficient decreases and smaller friction force acts against the body displacement. Stoppage of these vibrations causes a steep increase of friction coefficient. When the body moves from static to dynamic equilibrium position on the inclined plane the vibratory displacement is governed by the transient regimes of motion. Assembly robots equipped with passive compliance vibratory end-effectors allow one to compensate considerably bigger deviations in part’s interposition without using sensors and feedback systems. Therefore usage of vibratory devices with passive compliance allows one to significantly reduce the expenses of robotic assembly.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1929
Author(s):  
Elizaveta V. Bobrynina ◽  
Tatiana V. Larionova ◽  
Tatiana S. Koltsova ◽  
Aleksey I. Shamshurin ◽  
Oksana V. Nikiforova ◽  
...  

Copper-based composite materials strengthened with nanosized fullerene soot particles were produced by mechanical milling and hot pressing technology with a content of carbon up to 5 wt. %. The microstructure of the composite powders and the compacts prepared using them were examined by light microscopy, SEM, EDS, XRD, and XPS; hardness, heat conductivity, and tribological characteristics were measured. The interesting feature of the observed microstructure was a “marble” pattern formed by a white boundary net. The study shows homogeneous distribution of carbon inside the copper grains and its lower concentration in the grain boundaries. The effect was caused by a reaction of carbon with oxygen adsorbed by the copper particles surface. The maximal hardness of the material is 160 HB for the sample with 0.5 wt. % of fullerene soot; this material has the minimal friction coefficient (0.12) and wear in a dry friction condition. Heat conductivity of the material (Cu-0.5 wt. % C) is 288 W/m*K.


Author(s):  
И.А. Кобыхно ◽  
Ф.А. Юнусов ◽  
А.Д. Бреки ◽  
О.В. Толочко ◽  
А.Г. Кадомцев

The paper presents the results of tribological studies of carbon fiber reinforced polymer filled with fullerene soot nanoparticles. It is shown that the dry friction coefficient of the materials does not change when the fullerene soot concentration increases up to 4wt%, but an increase in the friction force occurs due to the forces of intermolecular attraction, the resultant of which monotonically increases.


Author(s):  
Nguyen Van Liem ◽  
Wu Zhenpeng ◽  
Jiao Renqiang

The effect of the shape/size and distribution of microgeometries of textures on improving the tribo-performance of crankpin bearing is proposed. Based on a combined model of the slider-crank mechanism dynamic and hydrodynamic lubrication, the distribution density, area density, and shape of spherical textures, square-cylindrical textures, wedge-shaped textures, and a hybrid between spherical texture and square-cylindrical texture on the crankpin bearing's tribo-performance are investigated under different operating conditions of the engine. The tribological characteristic of the crankpin bearing is then evaluated via the indexes of the oil film pressure p, asperity contact force, friction force, and friction coefficient of the crankpin bearing. The research results show that the distribution density with n = 12 and m = 6, and area density with α = 30% of various microtextures have an obvious effect on ameliorating the crankpin bearings tribo-performance. Concurrently, at the mixed lubrication region, the shape of the square-cylindrical texture on improving the tribo-performance is better than the other shapes of the spherical texture, wedge-shaped texture, and spherical and square-cylindrical texture. Particularly, all the average values of the asperity contact force, friction force, and friction coefficient with a square-cylindrical texture are significantly reduced by 14.6%, 19.5%, and 34.5%, respectively, in comparison without microtextures. Therefore, the microtextures of the spherical texture applied on the bearing surface can contribute to enhance the durability and decrease the friction power loss of the engine.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 660
Author(s):  
Dariusz Jędrzejczyk ◽  
Elżbieta Szatkowska

The analyzed topic refers to the wear resistance and friction coefficient changes resulting from heat treatment (HT) of a hot-dip zinc coating deposited on steel. The aim of research was to evaluate the coating behavior during dry friction after HT as a result of microstructure changes and increase the coating hardness. The HT parameters should be determined by taking into consideration, on the one hand, coating wear resistance and, on the other hand, its anticorrosion properties. A hot-dip zinc coating was deposited in industrial conditions (according EN ISO 10684) on disc-shaped samples and the chosen bolts. The achieved results were assessed on the basis of tribological tests (T11 pin-on-disc tester, Schatz®Analyse device, Sindelfingen, Germany), microscopic observations (with the use of optical and scanning microscopy), EDS (point and linear) analysis, and microhardness measurements. It is proved that properly applied HT of a hot-dip zinc coating results in changes in the coating’s microstructure, hardness, friction coefficient, and wear resistance.


2010 ◽  
Vol 654-656 ◽  
pp. 2763-2766 ◽  
Author(s):  
Li Wen Mu ◽  
Xin Feng ◽  
Yi Jun Shi ◽  
Huai Yuan Wang ◽  
Xiao Hua Lu

The tribological properties of polyimide (PI) composites reinforced with graphite or MoS2 sliding in liquid alkali and water as well as dry friction were investigated using a ring-on-ring tester. The results show that the friction coefficient (μ) and wear rate (W) for both graphite/PI and MoS2/PI composites in different liquid mediums are μdry>μwater >μalkali and Wwater>Wdry >Walkali. Results also indicate that the friction coefficient and wear rate of the PI composites filled with different solid lubricants are μMoS2 >μgraphite and W MoS2 >Wgraphite in different liquid mediums. In addition, the hydrophobic inorganic fillers are fit for the reinforcement of polymer-based composites sliding in liquid mediums. It is also concluded from the authors’ work that the wear rate and friction coefficient of polymer-based (such as PI, PTFE) composites in the alkali lubricated conditions is lowest among all the friction conditions. This may be attributed to the ionic hydration in the alkaline solution.


Sign in / Sign up

Export Citation Format

Share Document