scholarly journals Reconfiguration of a Multilevel Inverter with Trapezoidal Pulse Width Modulation

Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2148 ◽  
Author(s):  
Nataraj Prabaharan ◽  
V. Arun ◽  
Padmanaban Sanjeevikumar ◽  
Lucian Mihet-Popa ◽  
Frede Blaabjerg

This paper presents different multi-carrier unipolar trapezoidal pulse width modulation strategies for a reduced switch asymmetrical multilevel inverter. The different strategies are phase disposition, alternative phase opposition and disposition, and carrier overlapping and variable frequency that involve triangular waves as carriers with a unipolar trapezoidal wave as a reference. The reduced switch, asymmetrical multilevel inverter operation was examined for generating the seven-level output voltage using Matlab/Simulink 2009b and the results were verified with a real-time laboratory-based experimental setup using a field-programmable gate array. Different parameter analyses, such as total harmonic distortion, fundamental root mean square voltage, and distortion factor, were analyzed with different modulation indices to investigate the performance of the selected topology. Unipolar trapezoidal pulse width modulation provides a higher root mean square voltage value.

2015 ◽  
Vol 15 (2) ◽  
pp. 229
Author(s):  
P. Sureshpandiarajan ◽  
S.P Natarajan ◽  
C.R. Balamurugan ◽  
K. Ramasamy

<p class="IEEEAuthorAffiliation">This work presents the comparison of various Pulse Width Modulation (PWM) techniques for the chosen single phase half bridge FCMLI (Flying Capacitor Multi Level Inverter). In this paper, a single phase half bridge flying capacitor multilevel inverter is controlled with sinusoidal, THI (Third Harmonic Injection), Trapezoidal and TAR (Trapezoidal Amalgamated Reference)reference with Equal Amplitude Carriers (EAC) and UEAC (Un Equal Amplitude Carriers). The proposed EAC and UEAC is applied for various PWM strategies. The PWM methods used for the analysis are PD (Phase Disposition) PWM, POD (Phase Opposition and Disposition) PWM, APOD (Alternative Phase Opposition and Disposition) PWM and CO (Carrier Overlapping) PWM with EAC and UEAC. For all the PWM methods and references the UEAC produces less THD and higher fundamental RMS (Root Mean Square) values except for m<sub>a</sub> =1. For m<sub>a</sub> =1 the EAC provides less THD (Total Harmonic Distortion) and higher fundamental RMS (Root Mean Square) values for all the PWM methods and references. To validate the developed technique, simulations are carried out through Power System Block Set.</p>


Author(s):  
M. H. Yatim ◽  
A. Ponniran ◽  
M. A. Zaini ◽  
M. S. Shaili ◽  
N. A. S. Ngamidun ◽  
...  

The purpose of this study is to analyze the operation and design of symmetrical and asymmetrical multilevel inverter structures with reduced number of switching devices. In this study, the term of conventional inverter is defined as a single cascaded inverter. Specifically, the inverter operates in three complete loops and only produces 2-level and 3-level of output voltages. Usually, cascaded structure suffers from the high total harmonic distortion. Thus, by considering multilevel structure of inverter, low total harmonic distortion reduction and voltage stress reduction on switching devices can be archived. Sinusoidal pulse width modulation and modified square pulse width modulation are used as modulation techniques in switching schemes of the designed multilevel inverters. The findings indicate that, the designed multilevel structure cause low total harmonics distortion at the output voltage. Furthermore, the asymmetrical structure is producing the same output voltage levels with reduced number of switching devices compared to the symmetrical structure is experimentally confirmed. The findings show that the total harmonic distortion for 7-level (symmetrical) and 9-level (asymmetrical) are 16.45% and 15.22%, respectively.


Author(s):  
P Yogini Dr. Sujatha Balaraman,

The prominence of Modular Multilevel Inverters (MMI) is rising owing their merits of simple mechanical construction and good voltage sharing for semiconductor devices. Mostly Multilevel Inverters use more than one source; however, the effective use of all the sources at all levels is rare. Conventional Multilevel Inverters will diminish the energy efficiency of the conversion system. When compared to conventional multilevel inverter, Modular Multilevel Inverter with a high numbers of voltage levels seem to be the most suitable because of the use of an isolated dc source. This paper explores a three-phase eleven level modular multilevel inverter with phase disposition pulse width modulation technique (PD-PWM) that can extract power from all the sources at all the levels. Besides, this paper develops a synchronous d-q reference frame controller to control the current of 11kV. When compared with Reduced Switch Count based Multilevel Inverter Series/Parallel switching topologies, the Modular Multilevel Inverter provides better Total Harmonic Distortion (THD) of output voltage and utilization factor.


Author(s):  
M. H. Yatim ◽  
A. Ponniran ◽  
A. N. Kasiran

<span>This paper presents a proposed modified pulse width modulation – low frequency triangular (MPWM-LFT) switching strategy for minimization of voltage THD with implementation of asymmetric multilevel inverter (AMLI) topology on the reduced number of switching devices (RNSD) circuit structure. Principally, MPWM-LFT able to produce optimum angle of the output voltage level in order to minimize total harmonic distortion (THD). In this study, 5-level reduced number of switching devices circuit structure is selected as a circuit configuration for asymmetric (7-level structure) multilevel inverter. For switching strategy, MPWM used low switching frequency in producing signal and needs higher output voltage levels to achieve low total harmonic distortion. In contrast, sinusoidal pulse width modulation used high switching frequency in order to minimize total harmonic distortion. By optimizing angle at the output voltage using MPWM-LFT switching strategy, the voltage THD is lower as compared to MPWM and SPWM switching strategies. MPWM-LFT switching strategy obtains 11.6% of voltage THD for the 7-level asymmetric topology as compared to MPWM and SPWM switching strategies with the voltage THD are 21.5% and 17.5% respectively from the experimental works.</span>


2020 ◽  
Vol 8 (5) ◽  
pp. 5180-5185

Paper Setup must be in A4 size with Margin: Top In the present paper multi carrier sinusoidal modulation technique which is an efficient method of producing control signals is used for a symmetrical inverter with several levels in cascade H Bridge is discussed. The Cascaded H-Bridge performance output levels depend on the DC voltage sources used at the input side. With the help of two DC voltage sources, five level output can be obtained whereas three sources gives levels of seven in output voltage. In this paper, multi-carrier SPWM switching is obtained for switching of multilevel inverter based switches. Two signals are used in this switching method, among which one of the signals is reference which is a low frequency sinusoidal signal and the one is a carrier signal. In case of sinusoidal PWM method of modulation technique, the reference signal is a sinusoidal one and triangular signal can be used as a carrier signal. These types of inverters have the ability to generate inverted output voltage with an efficient harmonic spectrum and reliable output results. This document provides switching signal for H-bridge inverter structure which can improve harmonic performance. The 5-level multilevel inverter is simulated for traditional carrier-based pulse-width modulation (PWM) phase change carrier techniques. The total harmonic performance of the output voltages is analyzed for the two PWM control methods. The performance of the symmetrical PWM CHB is simulated using MATLAB-SIMULINK model. Model results show that THD can be minimized to a limit with level shifted modulation method of the sinusoidal pulse width. The results from the simulations show that the quality of the waveform of the output voltage improves with less loss and with a lower THD.


2022 ◽  
Vol 4 (1) ◽  
pp. 1-13
Author(s):  
Madhu Andela ◽  
Ahmmadhussain Shaik ◽  
Saicharan Beemagoni ◽  
Vishal Kurimilla ◽  
Rajagopal Veramalla ◽  
...  

This paper deals with a reduced switch multi-level inverter for the solar photovoltaic system-based 127-level multi-level inverter. The proposed technique uses the minimum number of switches to achieve the maximum steps in staircase AC output voltage when compared to the flying capacitor multi-level inverter, cascaded type multilevel inverter and diode clamped multi-level inverter. The use of a minimum number of switches decreases the cost of the system. To eliminate the switching losses, in this topology a square wave switch is used instead of pulse width modulation. Thereby the total harmonic distortion (THD) and harmonics have been reduced in the pulsating AC output voltage waveform. The performance of 127-level MLI is compared with 15 level, 31-level and 63-level multilevel inverters. The outcomes of the solar photovoltaic system-based 127-level multi-level inverter have been simulated in a MATLAB R2009b environment.


Author(s):  
N. Susheela ◽  
P. Satish Kumar

<p>The popularity of multilevel inverters have increasing over the years in various applications without use of a transformer and has many benefits. This work presents the performance and comparative analysis of single phase diode clamped multilevel inverter and a hybrid inverter with reduced number of components. As there are some drawbacks of diode clamped multilevel inverter such as requiring higher number of components, PWM control method is complex and capacitor voltage balancing problem, an implementation of hybrid inverter that requires fewer components and less carrier signals when compared to conventional multilevel inverters is discussed. The performance of single phase diode clamped multilevel inverter and hybrid multilevel inverter for seven, nine and eleven levels is performed using phase disposition, alternate phase opposition disposition sinusoidal pulse width modulation techniques. Both the multilevel inverter are implemented for the above mentioned multicarrier based Pulse Width Modulation methods for R and R-L loads.  The total harmonic distortion is evaluated at various modulation indices. The analysis of the multilevel inverters is done by simulation in matlab / simulink environment.</p>


Multilevel inverters are widely used for high power and high voltage applications. The performance of multilevel inverters are superior to conventional two level inverters in terms of reduced total harmonic distortion, higher dc link voltages, lower electromagnetic interference and increased quality in the output voltage waveform. This paper presents a single phase hybrid eleven level multilevel inverter topology with reduced switch count to compensate the above mentioned disadvantages. This paper also presents various high switching frequency based multi carrier pulse width modulation strategies such as Phase Disposition PWM Strategy (PDPWM), Phase Opposition and Disposition PWM Strategy (PODPWM), Alternate Phase opposition Disposition PWM (APODPWM), Carrier Overlapping PWM (COPWM), Variable frequency carrier PWM (VFPWM), Third Harmonic Injection PWM (TFIPWM) applied to the proposed eleven level multilevel inverter and is analyzed for RL load. FFT analysis is carried out and total harmonic distortion, fundamental output voltage are calculated. Simulation is carried out in MATLAB/SMULINK.


Sign in / Sign up

Export Citation Format

Share Document