scholarly journals Effect of Densification Conditions on Specific Energy Requirements and Physical Properties of Compacts Made from Hop Cone

Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2389 ◽  
Author(s):  
Niccolò Pampuro ◽  
Patrizia Busato ◽  
Eugenio Cavallo

Hop cones, due to their essential flavor, are one of the four main ingredients for beer production. The paper reports the results on an investigation of the densification process of hop cones. This experiment investigated (i) the effects of compression pressure in the range of 40 to 80 MPa and pressure application time in the range of 10 to 40 s on the final density and durability of the compacts made from hop cones and ii) the specific compression energy required for the process. The specific compression energy requirements to compact hop cones ranged from 14.20 to 24.48 kJ kg−1. The final compact density values ranged from 515.2 to 876.6 kg m−3, while the durability percentage calculated ranged from 71% to 91%. The obtained results highlighted that compression pressure—in the range of 40–80 MPa—significantly affects the specific compression energy requirements, the final density and the durability of the produced compacts. In this experiment, pressure application time plays a key role in determining compacts density, while did not affect durability and compression energy requirements. Considering the specific compression energy values calculated in this experiment, it can be stated that the pressure agglomeration method described to compact hop cones is more efficient than pelletizing process which is typically characterized by specific energy values ranging from 19 to 90 kJ kg−1.

2013 ◽  
Vol 44 (2s) ◽  
Author(s):  
Niccolò Pampuro ◽  
Alessio Facello ◽  
Eugenio Cavallo

The excessive amount of pig slurry spread on soil has contributed to nitrate water pollution both in surface and in ground waters, especially in areas classified as vulnerable zones to nitrate in accordance with European Regulation (91/676/CEE). Several techniques have been developed to manage livestock slurries as cheaply and conveniently as possible and to reduce potential risks of environmental pollution. Among these techniques, solid-liquid separation of slurry is a common practice in Italy. The liquid fraction can be used for irrigation and the solid fraction, after aerobic stabilization, produces an organic compost rich in humic substances. However, compost derived from swine solid fraction is a low density material (bulk density less than 500 kg􀀀m–3). This makes it costly to transport composted swine solid fraction from production sites to areas where it could be effectively utilized for value-added applications such as in soil fertilization. Densification is one possible way to enhance the storage and transportation of the compost. This study therefore investigates the effect of pressure (20- 110 MPa) and pressure application time (5-120 s) on the compaction characteristics of compost derived from swine solid fraction. Two different types of material have been used: composted swine solid fraction derived from mechanical separation and compost obtained by mixing the first material with wood chips. Results obtained showed that both the pressure applied and the pressure application time significantly affect the density of the compacted samples; while the specific compression energy is significantly affected only by the pressure. Best predictor equations were developed to predict compact density and the specific compression energy required by the densification process. The specific compression energy values based on the results from this study (6-32 kJ􀀀kg–1) were significantly lower than the specific energy required to manufacture pellets from biomass feedstock (typically 19-90 kJ􀀀kg–1).


2013 ◽  
Vol 44 (2s) ◽  
Author(s):  
Alessio Facello ◽  
Eugenio Cavallo ◽  
Raffaele Spinelli

Air pollution and fossil fuel reserves exhaustion are increasing the importance of the biomass-derived products, in particular wood, as source of clean and renewable energy for the production of electricity or steam. In order to improve the global efficiency and the entire production chain, we have to evaluate the energetic aspects linked to the process of transformation, handling and transport of these materials. This paper reports results on a comparison between two chippers of similar size using different cutting technology: disc and drum tool respectively. During trials, fuel consumption, PTO torque and speed, processing time and weight of processed material were recorded. Power demand, fuel consumption, specific energy and productivity were computed. The machine was fed with four different feedstock types (chestnut logs, poplar logs, poplar branches, poplar sawmill residues). 15 repetitions for each combination of feedstock-tool were carried out. The results of this study show that the disc tool requires, depending on the processed material, from 12 to 18% less fuel per unit of material processed than the drum tool, and consequently, from 12 to 16% less specific energy. In particular, the highest difference between tools was found in branches processing whereas the smallest was in poplar logs. Furthermore the results of the investigation indicate, that, in testing conditions, the productivity of drum tool is higher (8%) than disc tool.


Energy ◽  
2011 ◽  
Vol 36 (11) ◽  
pp. 6433-6441 ◽  
Author(s):  
Ali Motevali ◽  
Saeid Minaei ◽  
Mohammad Hadi Khoshtaghaza ◽  
Hamed Amirnejat

1987 ◽  
Vol 2 (4) ◽  
pp. 478-484 ◽  
Author(s):  
K. Kobayashi ◽  
P. Dordor ◽  
J. P. Bonnet ◽  
R. Salmon ◽  
P. Hagenmuller

An original preparation of ZnO is described where the powder is obtained by precipitaton from zinc nitrate in aqueous solution followed by a calcination. Scanning electron microscopy reveals a close relation between the initial density and the morphology of the powder, the latter being also strongly dependent on the calcining conditions. The investigation of the densification process shows the extreme sensitivity of the final density to sintering conditions. A physical model based on the competitive influences of shrinkage and evaporation successfully describes the observed phenomena.


CIRP Annals ◽  
2016 ◽  
Vol 65 (1) ◽  
pp. 25-28 ◽  
Author(s):  
Paolo C. Priarone ◽  
Matteo Robiglio ◽  
Luca Settineri ◽  
Vincenzo Tebaldo

Author(s):  
Lihua Ye ◽  
Hany S. EL-Mesery ◽  
Muhammad Muzamal Ashfaq ◽  
Yefan Shi ◽  
Hu Zicheng ◽  
...  

2021 ◽  
Vol 4 (4) ◽  
pp. 333-344
Author(s):  
Johnson Ajeh Isaac ◽  
Kokonne Elizabeth Ekere ◽  
Ekeh Ezekiel ◽  
Isa Hayatu Galadima ◽  
Rashida Abdulahi ◽  
...  

Traditionally, the leafy part of Andrographis paniculata and Moringa oleifera have been widely reported to manage hypertension. Investigation of its pharmacological actions justifies its use. As part of formulation studies to standardize them, this study focused on their compaction and compression properties. Compacts equivalent to 250 mg of A. paniculata and M. oleifera were produced by compressing powders and granules at various compression pressure. Results show that M. oleifera met the WHO limit for ash values. Relative density values for granulated batches were higher, while their moisture content values were lower when compared to those of direct compression. The result from Heckel plots shows that batches deform mainly by plastic flow. For Kawakita plots, values of 1/b show that batches containing microcrystalline cellulose were less cohesive. The plot of tensile strength signifies that granulated batches achieved maximum crushing strength faster at low pressure. Formulations containing maize starch were shown to have higher percent porosity, and granulated batches gave higher values for apparent density-pressure relationship and lower friability values. Tablets produced by the wet granulation method showed better compression and compaction properties than those formulated by direct compression.


2018 ◽  
Vol 168 ◽  
pp. 07005 ◽  
Author(s):  
Peter Križan ◽  
Michal Svátek ◽  
Miloš Matúš ◽  
Juraj Beniak

The main aim of this paper is to present the design of experiment (DOE) and evaluation methodology for this experimental plan in order to determine the parameters effect of biomass densification process on final solid biofuels quality. One of the recovery possibilities for waste biomass raw materials is production of solid biofuels. Using a variety combination of influencing variables can be improve the final quality of solid biofuels. Raw biomass material variables influence, especially (type of raw material, particle size, moisture content, compression pressure and compression temperature) can be recognized during the production of solid biofuels. Their effect can be seen through the quality indicators; especially mentioned variables significantly influence the mechanical quality indicators of solid biofuels. In this experimental research authors would like to investigate properties and behaviour of wood raw waste biomass during densification. This contribution discusses the analysis and design of experimental process, its individual steps and their subsequent DOE leading to the development of a mathematical model that will describe this process. This paper also presents the research findings regarding the effect of influencing variables on final density of solid biofuels during densification. Aim of the experimental process is to determine the mutual interaction between solid biofuels density and influencing variables during densification. Effect of compression pressure, compression temperature, moisture content and particle size on solid biofuels density from wood sawdust was determined.


Sign in / Sign up

Export Citation Format

Share Document