scholarly journals Compensation for Inverter Nonlinearity in Permanent Magnet Synchronous Motor Drive and Effect on Torsional Vibration of Electric Vehicle Driveline

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2542 ◽  
Author(s):  
Weihua Wang ◽  
Wenkai Wang

Permanent magnet synchronous motors (PMSMs) with inverters are widely used in electric vehicles (EVs). However, current harmonics caused by the nonlinearity of the inverter generate torque ripples and give rise to torsional vibration in the vehicle driveline. This paper proposes a new compensation method to suppress the torque ripples. This method extracts the 6th-order harmonic component online from the d-axis and q-axis currents with the approximate Fourier transform, and adopts a harmonic current PI regulator to calculate compensation voltage, which is added to the voltage reference to compensate the nonlinearity of the inverter. After correcting the current distortion and improving the motor torque smoothness, the torsional vibration of the driveline caused by the motor pulsating torque is reduced. According to the simulation results, the 6th-order of motor torque ripple and the torsional vibration response is reduced about 26–28%, which confirms the validity of the proposed strategy. The proposed method does not need any additional hardware and can be implemented broadly in PMSM drives.

2014 ◽  
Vol 998-999 ◽  
pp. 607-612
Author(s):  
Xiang Tang ◽  
Jun Gu ◽  
Ting Gao Qin

In this paper, a method of direct torque control (DTC) for permanent magnet synchronous motor (PMSM) based on fuzzy regulator is proposed. It overcomes the disadvantages such as speed drop with load, torque ripple etc., which happens in the DTC for PMSM based on conventional PI regulator. The simulation results show that, the DTC for PMSM based on fuzzy regulator can effectively improve the system loading capability and significantly reduce the torque ripple and the harmonic content of the system. Therefore, it can comprehensively improve the system performance.


2017 ◽  
Vol 66 (2) ◽  
pp. 295-312 ◽  
Author(s):  
Hongbo Qiu ◽  
Wenfei Yu ◽  
Yonghui Li ◽  
Cunxiang Yang

AbstractAt present, the drivers with different control methods are used in most of permanent magnet synchronous motors (PMSM). A current outputted by a driver contains a large number of harmonics that will cause the PMSM torque ripple, winding heating and rotor temperature rise too large and so on. In this paper, in order to determine the influence of the current harmonics on the motor performance, different harmonic currents were injected into the motor armature. Firstly, in order to study the influence of the current harmonic on the motor magnetic field, a novel decoupling method of the motor magnetic field was proposed. On this basis, the difference of harmonic content in an air gap magnetic field was studied, and the influence of a harmonic current on the air gap flux density was obtained. Secondly, by comparing the fluctuation of the motor torque in the fundamental and different harmonic currents, the influence of harmonic on a motor torque ripple was determined. Then, the influence of different current harmonics on the eddy current loss of the motor was compared and analyzed, and the influence of the drive harmonic on the eddy current loss was obtained. Finally, by using a finite element method (FEM), the motor temperature distribution with different harmonics was obtained.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Mingli Lu ◽  
Dong Zhang ◽  
Benlian Xu ◽  
Haodong Yang ◽  
Yi Xin

The multiphase motor drive systems have become a focus in many application areas such as ship electric propulsion, urban mass transit, aerospace, and weapon equipment, as they are characterized by high power density, low torque pulsation as small torque ripple, large output power, strong fault tolerance, and high reliability. However, with the increase of the phase number of the motor, the current harmonic component increases correspondingly, which leads to the decrease of the control performance compared with the three-phase system. In order to overcome this challenge, implementation method of driving control technology for seven-phase permanent magnet synchronous motor (PMSM) based on SVPWM algorithm is discussed thoroughly in this paper. Simulink and experiments have been developed to check its practical feasibility. The results show that the near-six vector SVPWM algorithm (NSV-SVPWM) achieves better performance than other methods.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5669
Author(s):  
Dingyu Wang ◽  
Yiguang Chen

In the five-phase permanent magnet synchronous motor (PMSM) control system, the torque ripple caused by coil inter-turn short-circuit (ITSC)fault will make the motor performance worse. Due to the existence of the short-circuit current in the faulty phase and the third harmonic component in the permanent magnet flux linkage, the electromagnetic torque will contain even-order ripple components when the faulty phase is removed. Torque ripple also cause speed ripple. In this paper, the repetitive controller (RC) is used to perform proportional gain compensation for speed ripple. By designing the RC and connecting RC and proportional integral (PI) controller in parallel for the speed loop, the torque ripple amplitude can be reduced. It can be seen from the simulation and experimental results that the torque ripple suppression strategy based on RC can effectively suppress the torque ripple under ITSC fault.


2014 ◽  
Vol 1044-1045 ◽  
pp. 858-862
Author(s):  
Ke Yi Zhan ◽  
Hai Bo Gao ◽  
Fei Fei Chi

The permanent magnet synchronous motors are more and more popular in marine electric propulsion field. Aiming to solve the problem of large torque ripple in traditional DTC system, this paper introduces the principle of space vector modulation and builds the electric propulsion system models based on direct torque control for permanent magnet synchronous motor in Simulink. Typical working condition experiments are designed to contrast the performances between traditional DTC and SVM-DTC. Simulation result proves that SVM-DTC can reduce ripples of both electromagnetic torque and stator flux effectively with the same dynamic response character as traditional DTC system.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2406 ◽  
Author(s):  
Cezary Jędryczka ◽  
Dawid Danielczyk ◽  
Wojciech Szeląg

This paper deals with the torque ripple minimization method based on the modulation of the phase currents of the permanent-magnet synchronous motor (PMSM) drive. The shape of the supply current waveforms reducing the torque ripple of the machine considered was determined on the basis of finite element analysis (FEA). In the proposed approach, the machine is supplied by a six-leg inverter in order to allow for the injection of zero sequence current harmonics. Two test PMSMs with fractional-slot concentrated windings (FSCW) and surface-mounted permanent magnets (SPMs) have been examined as a case study problem. Wide-range fractional analyses were performed using developed numerical models of the electromagnetic field distribution in the considered machines. The results obtained show that the level of torque ripple in FSCW PMSMs can be effectively reduced by the modulation of the phase currents under the six-leg inverter supply.


2021 ◽  
Author(s):  
Katsumi Yamazaki ◽  
Kento Utsunomiya ◽  
Hiroaki Ohiwa

In this article, we investigate mechanism of torque ripple generation by time and space harmonic magnetic fields in permanent magnet synchronous motors to obtain advanced motor designs. The general expression between the torque ripples and harmonic air-gap flux densities in the motor is derived by using Maxwell stress tensor. <a>Both the numerical and experimental verifications of this expression are carried out.</a> Then, the major harmonic magnetic fields that produce the torque ripples are specified and the differences between the surface and interior permanent magnet synchronous motors are investigated. According to these investigations, the shape of the rotor surface of an interior permanent magnet motor is optimized. It is clarified that specific harmonic components of the torque ripples in interior permanent magnet synchronous motors can be reduced to be nearly zero by optimizing the rotor surface shape.


Sign in / Sign up

Export Citation Format

Share Document