scholarly journals Design and Simulation of Romanian Solar Energy Charging Station for Electric Vehicles

Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 74 ◽  
Author(s):  
Gheorghe Badea ◽  
Raluca-Andreea Felseghi ◽  
Mihai Varlam ◽  
Constantin Filote ◽  
Mihai Culcer ◽  
...  

Since mid 2010, petrol consumption in the transport sector has increased at a higher rate than in other sectors. The transport sector generates 35% of the total CO2 emissions. In this context, strategies have been adopted to use clean energy, with electromobility being the main directive. This paper examines the possibility of charging electric vehicle batteries with clean energy using solar autochthonous renewable resources. An isolated system was designed, dimensioned, and simulated in operation for a charging station for electric vehicles with photovoltaic panels and batteries as their main components. The optimal configuration of the photovoltaic system was complete with improved Hybrid Optimization by Genetic Algorithms (iHOGA) software version 2.4 and we simulated its operation. The solar energy system has to be designed to ensure that the charging station always has enough electricity to supply several electric vehicles throughout all 24 h of the day. The main results were related to the energy, environmental, and economic performance achieved by the system during one year of operation.

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2979
Author(s):  
Simon Steinschaden ◽  
José Baptista

One important goal of the climate commitment in the European Union (EU) is to reduce primary energy demand in the transport sector and increase the use of renewables, since around 33% of primary energy is consumed in this sector. Therefore, the EU ordered its member states to raise the number of electric vehicles (EVs) within Europe. Consequently, the energy demand for electricity will rise as a function of the number of EVs. To avoid local grid overload and guarantee a higher percentage of clean energy, EV charging stations can be supported by a combined system of grid-connected photovoltaic modules and battery storage. In this paper, the focus lies on the feasibility and economic aspects of such systems. To provide an overview of the different e-charging station combinations, a support tool was modelled and developed, making it possible to size and manage EVs charging stations with only a few input parameters. Thanks to its easy handling, the tool suits a wide spectrum of users. Due to enhanced optional settings, this tool is suitable for detailed input parameters for professionals as well. Input categories are basically divided into the photovoltaic (PV) system, battery storage, the charging station itself, and investment analysis. The tool supports decisions for solar charging stations designed for different parking locations like offices, schools, and public and private places.


Author(s):  
Amir Ahadi ◽  
Shrutidhara Sarma ◽  
Jae Sang Moon ◽  
Jang Ho Lee

In recent years, integration of electric vehicles (EVs) has increased dramatically due to their lower carbon emissions and reduced fossil fuel dependency. However, charging EVs could have significant impacts on the electrical grid. One promising method for mitigating these impacts is the use of renewable energy systems. Renewable energy systems can also be useful for charging EVs where there is no local grid. This paper proposes a new strategy for designing a renewable energy charging station consisting of wind turbines, a photovoltaic system, and an energy storage system to avoid the use of diesel generators in remote communities. The objective function is considered to be the minimization of the total net present cost, including energy production, components setup, and financial viability. The proposed approach, using stochastic modeling, can also guarantee profitable operation of EVs and reasonable effects on renewable energy sizing, narrowing the gap between real-life daily operation patterns and the design stage. The proposed strategy should enhance the efficiency of conventional EV charging stations. The key point of this study is the efficient use of excess electricity. The infrastructure of the charging station is optimized and modeled.


2019 ◽  
Vol 11 (20) ◽  
pp. 5743 ◽  
Author(s):  
Higinio Sánchez-Sáinz ◽  
Carlos-Andrés García-Vázquez ◽  
Francisco Llorens Iborra ◽  
Luis M. Fernández-Ramírez

The global energy system is changing, mainly to achieve sustainable transport technologies and clean electrical generation based on renewable sources. Thus, as fuels, electricity and hydrogen are the most promising transport technologies in order to reduce greenhouse emissions. On the other hand, photovoltaic and wind energies, including energy storage, have become the main sources of distributed generation. This study proposes a new optimal-technical sizing method based on the Simulink Design Optimization of a stand-alone microgrid with renewable energy sources and energy storage to provide energy to a wireless power transfer system to charge electric vehicles along a motorway and to a hydrogen charging station for fuel cell-powered buses. The results show that the design system can provide energy for the charging of electric vehicles along the motorway and produce the hydrogen consumed by the fuel cell-buses plus a certain tank reserve. The flexibility of the study allows the analysis of other scenarios, design requirements, configurations or types of microgrids.


Author(s):  
Pushpendra Arya

In today’s world we are going towards the major share of renewable energy to reduce the effect Green House Gases (GHG) in the atmosphere. The limitation of energy sources which produces clean energy, the rise in the pollution in the environment, and programs initiated by the Indian Government have encouraged lots of open field researches on Solar Photovoltaic Systems or Solar Energy Systems. As producing the clean and renewable energy is main component of energy sector, solar photovoltaic could be considered as an alternative in various regions. Although Solar Photovoltaic does have different advantages and can be used for various purposes, but also there are several challenges for it. This paper took a whole overview of the advantages and uses of Solar Photovoltaic and barriers in their adaptation/opportunities.


Author(s):  
Samuel Guimaraes Ferreira ◽  
Livia Da Silva Oliveira ◽  
David Barbosa de Alencar

Energy consumption is a major factor in relation to an organization's costs and expenses, determining the need to apply methods that can minimize or reduce these expenses as much as possible. Having these factors in context, the present work aims to present the technical feasibility of implementing a project that uses solar energy through the on-grid solar system to supply the energy demand of a company. The methodology used was the descriptive, in which several data were collected and documentations were analyzed that supported and justified the elaboration of a photovoltaic project and development of the budget and analysis of the costs of a solar energy system. Through the results obtained, it was possible to arrive at a solar project that would be able to establish the necessary power for the company for a cost of R $ 20,916.96 and a payback of 5 years and 5 months. Thus, it is possible to conclude that the photovoltaic system is viable in its use and application, not only because of the advantages associated with the environment, but taking into account its self-sustainability over time and with a useful life of up to 25 years.


2020 ◽  
Vol 12 (10) ◽  
pp. 4278 ◽  
Author(s):  
Pratibha Rani ◽  
Arunodaya Raj Mishra ◽  
Abbas Mardani ◽  
Fausto Cavallaro ◽  
Dalia Štreimikienė ◽  
...  

The age of industrialization and modernization has increased energy demands globally. Solar energy has been recognized as an inexhaustible source of energy and has been applied for desalination and electricity generation. Among different non-conventional energy resources, Solar Energy (SE) is one of the main contributors to the global energy system. A photovoltaic system (PS) is applied to produce SE using photovoltaic cells. The selection of a solar panel includes many intricate factors involving both subjective and quantifiable parameters; therefore, it can be regarded as a complex Multi-Criteria Decision-Making (MCDM) problem. As the uncertainty commonly occurs in the selection of an ideal solar panel, the theory of Pythagorean fuzzy sets has been proven as one of the flexible and superior tools to deal with the uncertainty and ambiguity that arise in real-life applications. The aim of the study is to present an MCDM framework for solving the Solar Panel Selection (SPS) problem within the Pythagorean fuzzy (PF) environment. For this, first, a new integrated method is proposed based on the Stepwise Weight Assessment Ratio Analysis (SWARA) and VlseKriterijumska Optimizcija I Kaompromisno Resenje (VIKOR) approaches in the Pythagorean fuzzy sets (PFSs) context. In the proposed approach, subjective weights of the evaluation criteria are calculated by the SWARA method, and the preference order of alternatives is decided by the VIKOR method in the PF context. The criteria weights evaluated by this approach involve the imprecision of experts’ opinions, which makes them more comprehensible. The computational procedure of the proposed methodology is established through a case study of the SPS problem under PF environment, which proves the applicability and efficiency of the proposed method. Furthermore, this study performs sensitivity analysis to reveal the stability of the developed framework. This analysis signifies that the solar panel option R4 constantly secures its highest ranking despite how the parameter values vary. In addition, a comparative study is discussed to analyze the validity of the obtained result. The results show that the proposed approach is more efficient and applicable with previously developed methods in the PFS environment.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2383
Author(s):  
Felix Guthoff ◽  
Nikolai Klempp ◽  
Kai Hufendiek

Electrification offers an opportunity to decarbonize the transport sector, but it might also increase the need for flexibility options in the energy system, as the uncoordinated charging process of battery electric vehicles (BEV) can lead to a demand with high simultaneity. However, coordinating BEV charging by means of smart charging control can also offer substantial flexibility potential. This potential is limited by restrictions resulting from individual mobility behavior and preferences. It cannot be assumed that storage capacity will be available at times when the impact of additional flexibility potential is highest from a systemic point of view. Hence, it is important to determine the flexibility available per vehicle in high temporal (and spatial) resolution. Therefore, in this paper a Markov-Chain Monte Carlo simulation is carried out based on a vast empirical data set to quantify mobility profiles as accurately as possible and to subsequently derive charging load profiles. An hourly flexibility potential is derived and integrated as load shift potential into a linear optimization model for the simultaneous cost-optimal calculation of the dispatch of technology options and long-term capacity planning to meet a given electricity demand. It is shown that the costs induced by BEV charging are largely determined by the profile costs from the combination of the profiles of charging load and renewable generation, and not only by the additional energy and capacity demand. If the charging process can be flexibly controlled, the storage requirement can be reduced and generation from renewable energies can be better integrated.


Solar Energy ◽  
2004 ◽  
Author(s):  
Naim H. Afgan ◽  
Marina Jovanovic ◽  
Maria G. Carvalho

Solar energy systems are becoming potential option for numerous applications. It has been shown that the application of solar energy system is strongly dependent on criteria’s used in their evaluation. Single criteria evaluation of solar energy systems has shown its deficiency due to limited possibility to compare them with other potential options. In particular, present economic system is based on the econometric analysis with priority given to the optimum obtained by the economically justified optimization function. For this reason, it has become needed to introduce multi-criteria evaluation procedure in the assessment of solar energy system and its comparison with other potential options. This paper presents evaluation of the solar photovoltaic system and its comparison with other renewable energy system options for stand-alone application. In this evaluation following energy systems will be taking into a consideration: grid electric energy supply, wind energy system, gas turbine with cogeneration, small hydro energy system and solar photo-voltaic energy system. In the evaluation of these systems the multi-criteria evaluation procedure is used. The multi-criteria evaluation procedure will comprise a following criteria’s: economic, environmental, technological and social indicators. Each of indicators will be based on the sub-criteria which are defined in the paper. The sustainability index as the agglomeration function indicators will be used in the determination of the rating among the options under consideration. Special emphasize in evaluation is given to to the conditional priority of indicators leading to the investigation of the effect of the indicator priority to the finale rating among options.


Author(s):  
Pham Thi Viet Huong ◽  
Mac Khuong Duy ◽  
Tran Anh Vu ◽  
Dang Anh Viet ◽  
Minh - Trien Pham

During the last few years, the demand for solar photovoltaic (PV) energy has grown remarkably since it provides electricity from an exhaustible and clean energy source. The generated power of solar panels depends on environment conditions, which changes continuously due to many factors, for example, the radiation, the characteristics of the load, etc. In order for the solar energy system operates at its most efficiency, it needs to work at its maximum power point (MPP). Previous literature has dealt with either investigating Maximum Power Point Tracking (MPPT) algorithms or tracking a steady output voltage from solar panels. However, when the load is changed, the new MPP need to be defined. In this paper, a novel adaptive MPPT system was proposed to investigate the MPP and keep tracking MPP at the same time. The proposed system was implemented in Proteus simulation. As the results, when the load is changing, the system obtained a steady and reliable desired output voltage. It is not only able to obtain a reliable steady DC output voltage but also keep the solar energy system work at its maximum efficiency.


2020 ◽  
Author(s):  
Markus Millinger ◽  
Philip Tafarte ◽  
Matthias Jordan ◽  
Alena Hahn ◽  
Kathleen Meisel ◽  
...  

<p>The increase of variable renewable energy sources (VRE), i.e. wind and solar power, may lead to a certain mismatch between power demand and supply. At the same time, in order to decarbonise the heat and transport sectors, power-based solutions are often seen as promising option, through so-called sector coupling. At times when VRE power supply exceeds demand, the surplus power could be used for producing liquid and gaseous electrofuels. The power is used for electrolysis, producing hydrogen, which can in turn be used either directly or combined with a carbon source to produce hydrocarbon fuels.</p><p>Here, we analyse the potential development of surplus power for the case of Germany, at an ambitious VRE expansion until 2050 and perform a cost analysis of electrofuels at different production levels using sorted residual load curves. These are then compared to biofuels and electric vehicles with the aid of an optimisation model, considering both cost- and greenhouse gas (GHG)-optimal options for the main transport sectors in Germany.</p><p>We find that, although hydrocarbon electrofuels are more expensive than their main renewable competitors, i.e. biofuels, they are most likely indispensable in addition for reaching climate targets in transport. However, the electrofuel potential is constrained by the availability of both surplus power and carbon. In fact, the surplus power potential is projected to remain limited even at currently ambitious VRE targets for Germany and carbon availability is lower in an increasingly renewable energy system unless direct air capture is deployed. In addition, as the power mix is likely to contain fossil fuels for decades to come, electrofuels based on power directly from the mix with associated conversion losses would cause higher GHG-emissions than the fossil transport fuel reference until a very high share of renewables in the power source is achieved. In contrast, electric vehicles are a more climate competitive option under the projected power mix with remaining fossil fuel fractions, due to a superior fuel economy and thereby lower costs and emissions.</p><p>As part of the assessment, we quantify the greenhouse gas abatement costs for different well-to-wheel pathways and provide an analysis and recommendations for a transition to sustainable transport.</p>


Sign in / Sign up

Export Citation Format

Share Document