scholarly journals Experimental and Numerical Thermal Analysis of Multi-Layered Microchannel Heat Sink for Concentrating Photovoltaic Application

Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 122 ◽  
Author(s):  
Idris Al Siyabi ◽  
Sourav Khanna ◽  
Senthilarasu Sundaram ◽  
Tapas Mallick

Concentrating photovoltaic has a major challenge due to the high temperature raised during the process which reduces the efficiency of the solar cell. A multi-layered microchannel heat sink technique is considered more efficient in terms of heat removal and pumping power among many other cooling techniques. Thus, in the current work, multi-layered microchannel heat sink is used for concentrating photovoltaic cooling. The thermal behavior of the system is experimentally and numerically investigated. The results show that in extreme heating load of 30 W/cm2 with heat transfer fluid flow rate of 30 mL/min, increasing the number of layers from one to four reduces the heat source temperature from 88.55 to 73.57 °C. In addition, the single layered MLM heat sink suffers from the highest non-uniformity in the heat source temperature compared to the heat sinks with the higher number of layers. Additionally, the results show that increasing the number of layers from one to four reduces the pressure drop from 162.79 to 32.75 Pa.

2000 ◽  
Author(s):  
X. Wei ◽  
Y. Joshi

Abstract A novel heat sink based on a multi-layer stack of liquid cooled microchannels is investigated. For a given pumping power and heat removal capability for the heat sink, the flow rate across a stack of microchannels is lower compared to a single layer of microchannels. Numerical simulations using a computationally efficient multigrid method [1] were carried out to investigate the detailed conjugate transport within the heat sink. The effects of the microchannel aspect ratio and total number of layers on thermal performance were studied for water as coolant. A heat sink of base area 10 mm by 10 mm with a height in the range 1.8 to 4.5 mm (2–5 layers) was considered with water flow rate in the range 0.83×10−6 m3/s (50 ml/min) to 6.67×10−6 m3/s (400 ml/min). The results of the computational simulations were also compared with a simplified thermal resistance network analysis.


Author(s):  
Dylan Farnam ◽  
Bahgat Sammakia ◽  
Kanad Ghose

Increasing power dissipation in microprocessors and other devices is leading to the consideration of more capable thermal solutions than the traditional air-cooled fin heat sinks. Microchannel heat sinks (MHSs) are promising candidates for long-term thermal solution given their simplicity, performance, and the development of MHS-compatible 3D device architecture. As the traditional methods of cooling generally have uniform heat removal on the contact area with the device, thermal consequences of design have traditionally been considered only after the layout of components on a device is finalized in accordance with connection and other criteria. Unlike traditional cooling solutions, however, microchannel heat sinks provide highly nonuniform heat removal on the contact area with the device. This feature is of utmost importance and can actually be used quite advantageously, if considered during the design phase of a device. In this study, simple thermal design criteria governing the general placement of components on devices to be cooled by microchannel heat sink are developed and presented. These thermal criteria are not meant to supersede connection and other important design criteria but are intended as a necessary and valuable supplement. Full-scale numerical simulations of a device with a realistic power map cooled by microchannel heat sink prove the effectiveness of the criteria, showing large reduction in maximum operating temperature and harmful temperature gradients. The simulations further show that the device and microchannel heat sink can dissipate a comparatively high amount of power, with little thermal danger, when design considers the criteria developed herein.


Author(s):  
M. B. Effat ◽  
M. S. AbdelKarim ◽  
O. Hassan ◽  
M. Abdelgawad

With the advance of miniaturization technology, more and more electronic components are placed onto small electronic chips. This leads to the generation of high amounts of thermal energy that should be removed for the safe operation of these electronic components. Microchannel heat sinks, where electronic chips are liquid cooled instead of the conventional air cooling techniques, were proposed as a means to improve cooling rates. Later on, double layer micro channel heat sinks were suggested as an upgrade to single layer microchannel heat sinks with a better thermal performance. In the present study the effects of increasing the number of layers of the microchannel heat sink to three-layers as well as the effect of changing the flow arrangements (counter and parallel flows) within the three channel layers on the thermal performance of the heat sink were investigated. In all investigated cases the temperature distribution over the base of the microchannel heat sink system and the total pressure drop are reported. A range of mass flow rates from 1×10−4 to 5×10−4 kg/s was considered. Uniform heat flux conditions were considered during the study. COMSOL Multiphysics finite element package was employed for the numerical analysis. Results indicate significant enhancement in the uniformity of the temperature on the processor surface when multi-layer channels were employed, compared to the single-layer case. The uniformity in the temperature distribution was accompanied by reduction of pressure drop across channels for the same mass flow rate and heat flux conditions. The counter flow arrangement showed the best temperature distribution with the uniform heat flux cases.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3753
Author(s):  
Grzegorz Czerwiński ◽  
Jerzy Wołoszyn

Air cooling systems are currently the most popular and least expensive solutions to maintain a safe temperature in electronic devices. Heat sinks have been widely used in this area, allowing for an increase in the effective heat transfer surface area. The main objective of this study was to optimise the shape of the heat sink geometric model using the Adjoint Solver technique. The optimised shape in the context of minimal temperature value behind the heat sink is proposed. The effect of radiation and trapezoidal fin shape on the maximum temperature in the cooling system is also investigated. Simulation studies were performed in Ansys Fluent software using the Reynolds—averaged Navier–Stokes technique. As a result of the simulation, it turned out that not taking into account the radiation leads to an overestimation of temperatures in the system—even by 14 ∘C. It was found that as the angle and height of the fins increases, the temperature value behind the heat sink decreases and the heat source temperature increases. The best design in the context of minimal temperature value behind the heat sink from all analysed cases is obtained for heat sink with deformed fins according to iteration 14. The temperature reduction behind the heat sink by as much as 25 ∘C, with minor changes in heat source temperature, has been achieved.


2004 ◽  
Vol 126 (1) ◽  
pp. 60-66 ◽  
Author(s):  
Xiaojin Wei ◽  
Yogendra Joshi

A novel heat sink based on a multilayer stack of liquid cooled microchannels is investigated. For a given pumping power and heat removal capability for the heat sink, the flow rate across a stack of microchannels is lower compared to a single layer of microchannels. Numerical simulations using a computationally efficient multigrid method [1] were carried out to investigate the detailed conjugate transport within the heat sink. The effects of the microchannel aspect ratio and total number of layers on thermal performance were studied for water as coolant. A heat sink of base area 10 mm by 10 mm with a height in the range 1.8 to 4.5 mm (2–5 layers) was considered with water flow rate in the range 0.83×10−6m3/s (50 ml/min) to 6.67×10−6m3/s (400 ml/min). The results of the computational simulations were also compared with a simplified thermal resistance network analysis.


Author(s):  
Vishal Singhal ◽  
Dong Liu ◽  
Suresh V. Garimella

Large pressure drops, and the associated pumping requirements, are often considered the most critical factor hindering widespread commercial use of microchannel heat sinks. Analytical methods are used in the present work to arrive at the pumping requirements for any given microchannel heat sink. A graphical method to check the suitability of a pump to a microchannel heat sink application has been devised. The size of the microchannels is also optimized so that for a specified heat removal rate, the pumping requirements are minimized. A number of commercially available pumps as well as several micropumps presented in the literature are compared based on their flow rate, pressure head and physical size to assess their suitability for a specific representative cooling application.


2011 ◽  
Vol 32 (3) ◽  
pp. 57-70 ◽  
Author(s):  
Dariusz Mikielewicz ◽  
Jarosław Mikielewicz

Utilisation of bleed steam heat to increase the upper heat source temperature in low-temperature ORC In the paper presented is a novel concept to utilize the heat from the turbine bleed to improve the quality of working fluid vapour in the bottoming organic Rankine cycle (ORC). That is a completely novel solution in the literature, which contributes to the increase of ORC efficiency and the overall efficiency of the combined system of the power plant and ORC plant. Calculations have been accomplished for the case when available is a flow rate of low enthalpy hot water at a temperature of 90 °C, which is used for preliminary heating of the working fluid. That hot water is obtained as a result of conversion of exhaust gases in the power plant to the energy of hot water. Then the working fluid is further heated by the bleed steam to reach 120 °C. Such vapour is subsequently directed to the turbine. In the paper 5 possible working fluids were examined, namely R134a, MM, MDM, toluene and ethanol. Only under conditions of 120 °C/40 °C the silicone oil MM showed the best performance, in all other cases the ethanol proved to be best performing fluid of all. Results are compared with the "stand alone" ORC module showing its superiority.


2016 ◽  
Vol 78 (10-2) ◽  
Author(s):  
Nik Ahmad Faiz Nik Mazlam ◽  
Normah Mohd-Ghazali ◽  
Thierry Mare ◽  
Patrice Estelle ◽  
Salma Halelfadl

The microchannel heat sink (MCHS) has been established as an effective heat removal system in electronic chip packaging. With increasing power demand, research has advanced beyond the conventional coolants of air and water towards nanofluids with their enhanced heat transfer capabilities. This research had been carried out on the optimization of the thermal and hydrodynamic performance of a rectangular microchannel heat sink (MCHS) cooled with carbon nanotube (CNT) nanofluid, a coolant that has recently been discovered with improved thermal conductivity. Unlike the common nanofluids with spherical particles, nanotubes generally come in cylindrical structure characterized with different aspect ratios. A volume concentration of 0.1% of the CNT nanofluid is used here; the nanotubes have an average diameter and length of 9.2 nm and 1.5 mm respectively. The nanofluid has a density of 1800 kg/m3 with carbon purity 90% by weight having lignin as the surfactant. The approach used for the optimization process is based on the thermal resistance model and it is analyzed by using the non-dominated sorting multi-objective genetic algorithm. Optimized outcomes include the channel aspect ratio and the channel wall ratio at the optimal values of thermal resistance and pumping power. The optimized results show that, at high operating temperature of 40°C the use of CNT nanofluid reduces the total thermal resistance by 3% compared to at 20°C and consequently improve the thermal performance of the fluid. In terms of the hydrodynamic performance, the pumping power is also being reduced significantly by 35% at 40°C compared to the lower operating temperature.  


2006 ◽  
Vol 326-328 ◽  
pp. 1275-1278 ◽  
Author(s):  
Chang Oh Kim ◽  
Jin Heung Kim ◽  
Nak Kyu Chung

This study aims to find out cooling characteristics of TMA 25wt%-water clathrate compound with ethanol such as supercooling, phase change temperature and specific heat. For this purpose, ethanol is added as per weight concentration and cooling experiment is performed at -6, -7 and -8, cooling heat source temperature, and it leads the following result. (1) Phase change temperature is decreased due to freezing point depression phenomenon. Especially, it is minimized as 5.1 and 5.0, 3.8 according to cooling source temperature in case that 0.5wt% of ethanol is added. (2) If 0.5wt% of ethanol is added, average supercooling degree is 0.9 and minimum supercooling is 0.8, 0.7 according to cooling heat source temperature. The restraint effect of supercooling is shown. (3) Specific heat shows tendency to decrease if ethanol is added. It is 3.013~3.048 kJ/kgK according to cooling heat source temperature if 0.5wt% of ethanol is added. Phase change temperature higher than that of water and inhibitory effect against supercooling can be confirmed through experimental study on cooling characteristics of TMA 25wt%-water clathrate compound by adding additive, ethanol.


Sign in / Sign up

Export Citation Format

Share Document