scholarly journals Extraction of Boundary Condition Independent Dynamic Compact Thermal Models of LEDs—A Delphi4LED Methodology

Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1628 ◽  
Author(s):  
Robin Bornoff

Multi-domain electro-thermal-optical models of LEDs are required so that their thermal and optical behavior may be predicted during a luminaire design process. Today, no standardized approach exists for the extraction of such models. Therefore, models are not readily provided by LED suppliers to end-users. This results in designers of LED-based luminaires wasting time on LED characterization and ad hoc model extraction themselves. The Delphi4LED project aims to address these deficiencies by identifying standardizable methodologies to extract both electro-optical and thermal compact models of LEDs that together can be used in a multi-domain simulation context. This article describes a methodology to extract compact thermal models of LEDs that are dynamic, in that they accommodate transient thermal effects, and are boundary condition-independent, in that their accuracy is independent of their thermal operating environment. Such models are achieved by first proposing an equivalent thermal nodal network topology. The thermal resistances and capacitances of that network are identified by means of optimization so that the transient thermal response of the network matches that of either an equivalent calibrated 3D thermal model or a transient thermal measurement of a physical sample. The accuracy of the thermal network is then verified by comparing the thermal compact model with a 3D detailed model, which predicts thermal responses within a 3D system-level model.

1999 ◽  
Vol 123 (4) ◽  
pp. 394-400 ◽  
Author(s):  
Ron S. Li

In modern automotive control modules, mechanical failures of surface mounted electronic components such as microprocessors, crystals, capacitors, transformers, inductors, and ball grid array packages, etc., are major roadblocks to design cycle time and product reliability. This paper presents a general methodology of failure analysis and fatigue prediction of these electronic components under automotive vibration environments. Mechanical performance of these packages is studied through finite element modeling approach for given vibration environments in automotive application. The vibration simulation provides system characteristics such as modal shapes and transfer functions, and dynamic responses including displacements, accelerations, and stresses. The system level model is correlated through vibration experiments. Using the results of vibration simulation, fatigue life is predicted based on cumulative damage analysis and material durability information. Detailed model of solder/lead joints is built to correlate the system level model and obtain solder stresses. Predicted failure mechanism of the leads agrees with the experiment observation. On the test vehicle with multiple components, one of the 160-pin gull-wing lead plastic quad flat packages was chosen as an example to illustrate the approach of failure analysis and fatigue life prediction.


Author(s):  
Daniel Tang ◽  
Mike Evans ◽  
Paul Briskham ◽  
Luca Susmel ◽  
Neil Sims

Self-pierce riveting (SPR) is a complex joining process where multiple layers of material are joined by creating a mechanical interlock via the simultaneous deformation of the inserted rivet and surrounding material. Due to the large number of variables which influence the resulting joint, finding the optimum process parameters has traditionally posed a challenge in the design of the process. Furthermore, there is a gap in knowledge regarding how changes made to the system may affect the produced joint. In this paper, a new system-level model of an inertia-based SPR system is proposed, consisting of a physics-based model of the riveting machine and an empirically-derived model of the joint. Model predictions are validated against extensive experimental data for multiple sets of input conditions, defined by the setting velocity, motor current limit and support frame type. The dynamics of the system and resulting head height of the joint are predicted to a high level of accuracy. Via a model-based case study, changes to the system are identified, which enable either the cycle time or energy consumption to be substantially reduced without compromising the overall quality of the produced joint. The predictive capabilities of the model may be leveraged to reduce the costs involved in the design and validation of SPR systems and processes.


2006 ◽  
Vol 129 (7) ◽  
pp. 790-797 ◽  
Author(s):  
Rodrigo A. Escobar ◽  
Cristina H. Amon

Lattice Boltzmann method (LBM) simulations of phonon transport are performed in one-dimensional (1D) and 2D computational models of a silicon-on-insulator transistor, in order to investigate its transient thermal response under Joule heating conditions, which cause a nonequilibrium region of high temperature known as a hotspot. Predictions from Fourier diffusion are compared to those from a gray LBM based on the Debye assumption, and from a dispersion LBM which incorporates nonlinear dispersion for all phonon branches, including explicit treatment of optical phonons without simplifying assumptions. The simulations cover the effects of hotspot size and heat pulse duration, considering a frequency-dependent heat source term. Results indicate that, for both models, a transition from a Fourier diffusion regime to a ballistic phonon transport regime occurs as the hotspot size is decreased to tens of nanometers. The transition is characterized by the appearance of boundary effects, as well as by the propagation of thermal energy in the form of multiple, superimposed phonon waves. Additionally, hotspot peak temperature levels predicted by the dispersion LBM are found to be higher than those from Fourier diffusion predictions, displaying a nonlinear relation to hotspot size, for a given, fixed, domain size.


2011 ◽  
Vol 17 (5) ◽  
pp. 369-379 ◽  
Author(s):  
David Schick ◽  
Sudarsanam Suresh Babu ◽  
Daniel R. Foster ◽  
Marcelo Dapino ◽  
Matt Short ◽  
...  

Solar Energy ◽  
2019 ◽  
Vol 177 ◽  
pp. 576-594 ◽  
Author(s):  
M. Cagnoli ◽  
A. de la Calle ◽  
J. Pye ◽  
L. Savoldi ◽  
R. Zanino

Author(s):  
Shaomin Xiong ◽  
Robert Smith ◽  
Na Wang ◽  
Dongbo Li ◽  
Erhard Schreck ◽  
...  

Heat assisted magnetic recording (HAMR) promises to deliver higher storage areal density than the current perpendicular magnetic recording (PMR) product. A laser is introduced to the HAMR system to heat the high coercively magnetic media above the Curie temperature (Tc) which is as high as 750 K in order to enable magnetic writing. The thermal response of the media becomes very critical for the success of the data writing process. In this paper, a new method is proposed to understand the transient thermal behavior of the HAMR media. The temperature response of the media is measured based on thermal erasure of the magnetically written signal. A lumped model is built to simplify the heat conduction problem to understand the transient thermal response. Finite element modeling (FEM) is implemented to simulate the transient thermal response of the media due to the laser pulse heating. The experimental and simulation results show fairly good agreement.


Sign in / Sign up

Export Citation Format

Share Document