scholarly journals Design and Simulation of an Energy Homeostaticity System for Electric and Thermal Power Management in a Building with Smart Microgrid

Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1806 ◽  
Author(s):  
Antonio Parejo ◽  
Antonio Sanchez-Squella ◽  
Rodrigo Barraza ◽  
Fernando Yanine ◽  
Aldo Barrueto-Guzman ◽  
...  

Nowadays, microgrids are gaining importance in electric power generation and distribution environments due to their flexibility, versatility, scalability and the possibility of supplying ancillary services when connected to the grid. They allow for the customization of electric supply for very different types of consumers. Therefore, a new control model for power and energy management based on homeostaticity of electric power systems (EPS) is presented, which has been already analyzed and approved by ENEL Chile in its developmental stage. ENEL, the largest electric utility in the country, is interested in incorporating smart microgrids in the electricity distribution market, as part of a worldwide policy. Such microgrids are to be installed in buildings serviced by ENEL. To demonstrate the model’s utility, a Simulink model of a real microgrid is used, which is comprised of PV generation, energy storage, an air conditioning (AC) equipment and thermal storage of the building upon which the microgrid is installed. The behavior of every element is simulated, including the dynamic thermal model of the building in order to optimize energy management and power supply versus consumption. The behavior of the whole system is analyzed under different environmental profiles and energy consumption patterns using the proposed homeostaticity system.

Author(s):  
Donald W. Leffler

In June 1983 Power Systems Engineering, Inc. began engineering of a base loaded 465 MW (net) combined cycle cogeneration plant (Figure 1) designed to sell up to 1,150,000 lb/hr (145.0 kg/s) of steam to a chemical plant in Houston, Texas, and sell up to 550,000 kW of electric power to the local electric utility (Houston Lighting & Power). Power Systems designed the plant, specified and procured equipment, arranged $220 million of project financing, will manage the construction of the plant, and will operate the plant. Power Systems negotiated the long-term steam contract with the chemical company and the power contract with HL&P. In addition, Power Systems obtained all permits and contracted for a long-term fuel supply.


2018 ◽  
Author(s):  
Stefan Höltinger ◽  
Johann Baumgartner ◽  
Christian Mikovits ◽  
Johannes Schmidt ◽  
Berit Arheimer ◽  
...  

Future energy systems with high shares of intermittent renewables will be stressed by climatic extreme events. We assess the frequency, duration, and magnitude of such extreme residual load events with a share of VRE generation of about 50% for the case of Sweden. For our analysis, we use 29 years of river runoff and of wind power and PV generation simulated from physical models. Hourly load is simulated from temperature data with a time series model. The resulting time series are combined with historic capacity and ramping restrictions of hydro and thermal power plants in an optimization model to minimize extreme residual load events. Results indicate that under high VRE shares climatic extreme events affect even highly flexible power systems as the Swedish one. Replacing current nuclear power capacities by wind power results on average in three extreme residual load events per year. These events are partly linked to the observation that wind speeds are likely below seasonal average in very cold weather conditions. Deploying PV generation capacities instead of wind increases the number of extreme residual load events by about 6 %, as most events occur during the winter month when solar generation is close to zero.


Digital Twin ◽  
2021 ◽  
Vol 1 ◽  
pp. 4
Author(s):  
Peter Palensky ◽  
Milos Cvetkovic ◽  
Digvijay Gusain ◽  
Arun Joseph

The electric power sector is one of the later sectors in adopting digital twins and models in the loop for its operations. This article firstly reviews the history, the fundamental properties, and the variants of such digital twins and how they relate to the power system. Secondly, first applications of the digital twin concept in the power and energy business are explained. It is shown that the trans-disciplinarity, the different time scales, and the heterogeneity of the required models are the main challenges in this process and that co-simulation and co-modeling can help. This article will help power system professionals to enter the field of digital twins and to learn how they can be used in their business.


Author(s):  
E. M. Farhadzadeh ◽  
A. Z. Muradaliyev ◽  
Y. Z. Farzaliyev ◽  
U. K. Ashurova

Improving the operational efficiency (OE) of thermal power plants is one of the most important problems of electric power systems (EPS). According to modern concepts, efficiency is the simultaneous consideration of three properties of objects, viz. economy, reliability and safety. The methodology of their joint assessment assumes that the service life of the main equipment does not exceed the standard value, but this condition is now met by less than half of the production enterprises of a lot of EPS. In order to increase OE, it is necessary, first of all, to learn how to objectively compare the performance of objects both of the same type – in a given time interval, and unique ones – in adjacent intervals. Existing methods for calculating integrated performance indicators do not fully take into account the random nature of technical and economic indicators (TEI). The article presents a new method for comparing the OE of EPS objects, the essence of which is to switch from joint consideration of TEI to analysis of their relative changes in comparison with the factory default value (nominal value). Relative values of indicators characterize the amount of wear or residual life. In this case, for example, the arithmetic mean of the relative values of the TEI determines the average wear of the object. This physical representation enlivens integral indicators, and their comparison and ranking ceases to be science-intensive. It is proposed to take into account also the degree of variation of relative deviations (wear), which is adequate to the object’s misalignment. It manifests itself in a significant change (deterioration) of one or (less often) two relative values of the TEI in the calculated time interval (month) and is characterized by such statistical indicators as the geometric mean and the coefficient of variation of relative deviations. Herewith, if the arithmetic mean value of the object’s wear is restored during major repairs, then the misalignment is eliminated much faster – during current repairs. A necessary condition for the feasibility of using these or those integral indicators is their functional and statistical independence. The results of the studies performed using the simulation method made it possible to establish that the smallest correlation occurs between the integral indicator calculated as the arithmetic mean of random variables and the integral indicator calculated as the coefficient of variation of the same random variables. Comparison of correlation fields clearly confirms these conclusions.


Author(s):  
Abdullah Alshaalan

Power systems' planning, particularly in developing countries, faces enormous challenges and problems such as defining the future load growth in the face of uncertainties. Renewable energies are coming to the arena and affecting the planning of power and energy systems. The relation between power generation, transmission, and distribution entities, as well as the need for consolidating the dispersed electric utilities in the isolated regions is a prerequisite for future planning. Plenty of technologies, systems, and contractors are coming off the road while an optimal reliability levels need to be achieved. This chapter attempts to display the most tedious and prominent problems and challenges that face innovating the electric power systems which must be based on two major factors, namely reliability and cost. This chapter will help in drafting a new contracting style that mitigate obstacles that face power systems planners and concerned agencies while planning and operating electric power facilities.


Author(s):  
Serhii Pysanko ◽  
◽  
Roman Romanyuk ◽  
Olena Pavlova ◽  
Kostiantyn Pavlov ◽  
...  

Electricity market of regions and Ukraine in the context of modernization changes The article considers the importance, structure and electricity in the fuel and energy complex of the country and regions. It was found that in the production of electricity used (TPP), hydraulic (HPP) and hydroaccumulative (PSP), nuclear (NPP) stations. The connection of electric power industry with industry is shown. The largest power plants of the regions of Ukraine were inspected. The mechanism of operation of condensing and thermal power plants is clarified. The defining principles of development and location of electric power of Ukraine are noted. The place and role of nuclear power plants in ensuring the principles of energy security of the country are described. The peculiarities of the problem of the electric power industry are highlighted, which are primarily the use of low-risk nuclear reactors, as well as the still current import of uranium ores as raw materials from Russia. Utilization of NPP waste remains an unresolved problem. Large power plants have been structured into integrated power systems, which locally form a unified state energy system. Alternative power plants are listed as centers of economic electricity, their advantages in comparison with traditional types of energy are highlighted, and the disadvantages are also emphasized.


2005 ◽  
Vol 54 (3) ◽  
pp. 771-782 ◽  
Author(s):  
M. Koot ◽  
J.T.B.A. Kessels ◽  
B. deJager ◽  
W.P.M.H. Heemels ◽  
P.P.J. vandenBosch ◽  
...  

Author(s):  
E. M. Farhadzadeh ◽  
A. Z. Muradaliyev ◽  
S. A. Abdullayeva ◽  
A. A. Nazarov

Basic EPS objects, which service life has exceeded normative value, increasingly affect – every year to a greater extent – the efficiency of overall performance. This manifests itself in increase of a number of automatic emergency shutdowns, an amount and complexities of accident-hazardous defects. After the expiration of the standard service life, there is a special need for a quantitative assessment of reliability and safety of an object. It is recommended to organize the operation, maintenance and repair of these objects according to their technical condition, and since it determines the reliability and safety of the object, these properties should be taken into account more fully. The relevant recommendations in electric power systems are implemented at a qualitative level, intuitively, according to the operating experience. There are neither quantitative evaluations nor methodology for their performance. Therefore, a method and algorithm of quantitative assessment of integral indicators of reliability and safety of operation of thermal power units of thermal power plants as concentrated objects of continuous operation were previously analyzed by the authors. The present paper examines distributed objects of continuous operation, viz. overhead power transmission lines with a voltage of 110 kV and higher, whose service life exceeds the standard value. Attention is paid to the issues of quantitative assessment of the degree of aging for a set of overhead power transmission lines, classification of these lines to identify the most significant classes and methodology for assessing the difference in the degree of aging when classifying them according to specified types of signs (for example, the difference in the degree of aging of overhead power transmission lines of grid enterprises of electric power systems). It is shown that it unacceptable to use the estimates of the relative number of overhead power transmission lines, the service life of which exceeds the calculated one, for comparison since it causes a great risk of an erroneous decision. The methodology and algorithm of methodological support of the management of electric power systems and grid enterprises in the organization of operation, maintenance and repair have been developed.


Sign in / Sign up

Export Citation Format

Share Document