scholarly journals Nanocrystalline and Silicon Steel Medium-Frequency Transformers Applied to DC-DC Converters: Analysis and Experimental Comparison

Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2062 ◽  
Author(s):  
Dante Ruiz-Robles ◽  
Jorge Ortíz-Marín ◽  
Vicente Venegas-Rebollar ◽  
Edgar L. Moreno-Goytia ◽  
David Granados-Lieberman ◽  
...  

High performance, highly efficient DC-DC converters play a key role in improving the penetration of renewable energy sources in the context of smart grids in applications such as solid-state transformers, built-in power drives in electric vehicles and interfacing photovoltaic and wind-power systems. Advanced medium-frequency transformers (MFTs) are fundamental to enhance DC-DC converters and determining its behavior, therefore MFT design procedures have become increasingly important in this context. This paper investigates which type of core material, between nanocrystalline and silicon steel, has the best properties for designing MFTs for distinct applications. Unlike to other proposals, in this work, two 1 kVA-120 V/240 V-1 kHz lab MFT prototypes, with a different type of core material, are developed for the purpose of comparing its physical characteristics, behavior, and performance under real-life conditions. A final section, the experimental results show that the nanocrystalline MFT has greater power density and efficiency. The results of this work introduce nanocrystalline MFTs as an option in a wider range of applications in niches in which other materials are currently used.

2021 ◽  
Vol 270 ◽  
pp. 01029
Author(s):  
Faez Al-Rufaee ◽  
Laythи Abd Ali ◽  
Vladimir Kuvshinov

The paper discusses the possibilities of using hybrid composite structures to overcome the energy shortage in Iraq, as well as the development of an efficient system of solar, wind turbine diesel generators. In this article, a Diesel Generator is combined with a wind turbine and batteries on the basis that the sun’s energy is not constant over time. The simulation was carried out using the HOMER program, which allows a detailed analysis of the volume and power of energy generated by the proposed system. The HOMER program is used for technical, economic, and environmental assessments. According to the results of the study, it was established that the most effective solution for saving electricity and overcoming energy shortages is a system consisting of renewable sources, as well as a diesel generator with batteries. The results also show that renewable energy sources used in the hybrid system provide about 69.2% of the electricity generated. This certainly improves the reliability of the electricity generated and reduces the fuel and maintenance costs of diesel generators, as well as saving the environment. The analysis of optimal systems is explained in detail to find the most achievable autonomous system.


Author(s):  
Isidro Fraga Hurtado ◽  
Julio Rafael Gómez Sarduy ◽  
Percy Rafael Viego Felipe ◽  
Vladimir Sousa Santos ◽  
Enrique Ciro Quispe Oqueña

Smart grids can be considered as a concept that integrates electrical, automatic control, information, and communication technologies. This concept constitutes a fundamental complement in the integration of renewable energy sources in electrical power systems. Although its application is fundamentally framed in transmission and distribution networks, it could also be implemented in industrial electrical systems. This article aims to analyze the advantages of implementing solutions based on smart grids in the industrial sector. Likewise, the results of its implementation in the large industry in the province of Cienfuegos, Cuba are presented. Specifically, reactive compensation, voltage, and demand management controls were integrated into a Supervision, Control, and Data Acquisition system forming a smart grid. It is shown that, in industries where infrastructure and equipment conditions exist, it is possible to successfully implement solutions with the functionalities and benefits inherent to smart grids.


2021 ◽  
Vol 23 (05) ◽  
pp. 625-635
Author(s):  
Ms. Kruthi Jayaram ◽  

Since ages, the best alternative for fossil fuel generation is found from Renewable energy sources. One among them is the Solar energy which can produce solar power. Solar power can be taught as “Solar Electricity” and is the most practical, cleanest forms of Renewa-ble Energy. Solar Power Systems otherwise called as PV systems can be of various types like off-grid and on-grid systems. This paper, focuses on Grid connected solar electric system. The paper aims at modelling high performance Three Phase Single Stage Grid Connected Inverter. So as to achieve maximum output from the photovoltaic array, MPPT Tracking is connected. The conversion from DC output of photovoltaic array is done to AC so that it is fed into the grid, a IGBT based inverter is used which converts from DC to AC power. A Simulation model is developed in MATLAB Simulink and results are presented in the paper.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2605 ◽  
Author(s):  
Rodríguez-García ◽  
Ribó-Pérez ◽  
Álvarez-Bel ◽  
Peñalvo-López

A transition to a sustainable energy system is essential. In this context, smart grids represent the future of power systems for efficiently integrating renewable energy sources and active consumer participation. Recently, different studies were performed that defined the conceptual architecture of power systems and their agents. However, these conceptual architectures do not overcome all issues for the development of new electricity markets. Thus, a novel conceptual architecture is proposed. The transactions of energy, operation services, and economic flows among the agents proposed are carefully analysed. In this regard, the results allow setting their activities’ boundaries and state their relationships with electricity markets. The suitability of implementing local electricity markets is studied to enforce competition among distributed energy resources by unlocking all the potential that active consumers have. The proposed architecture is designed to offer flexibility and efficiency to the system thanks to a clearly defined way for the exploitation of flexible resources and distributed generation. This upgraded architecture hereby proposed establishes the characteristics of each agent in the forthcoming markets and studies to overcome the barriers to the large deployment of renewable energy sources.


2020 ◽  
Vol 9 (1) ◽  
pp. 896-921
Author(s):  
Amende Sivanathan ◽  
Qingqing Dou ◽  
Yuxuan Wang ◽  
Yunfeng Li ◽  
Jorge Corker ◽  
...  

AbstractBuildings contribute to 40% of total global energy consumption, which is responsible to 38% of greenhouse gas emissions. It is critical to enhance the energy efficiency of buildings to mitigate global warming. In the last decade, advances in thermal energy storage (TES) techniques using phase change material (PCM) have gained much attention among researchers, mainly to reduce energy consumption and to promote the use of renewable energy sources such as solar energy. PCM technology is one of the most promising technologies available for the development of high performance and energy-efficient buildings and, therefore, considered as one of the most effective and on-going fields of research. The main limitation of PCM is its leakage problem which limits its potential use in building construction and other applications such as TES and textiles, which can be overcome by employing nano-/micro-encapsulation technologies. This paper comprehensively overviews the nano-/micro-encapsulation technologies, which are mainly classified into three categories including physical, physiochemical and chemical methods, and the properties of microcapsules prepared. Among all encapsulation technologies available, the chemical method is commonly used since it offers the best technological approach in terms of encapsulation efficiency and better structural integrity of core material. There is a need to develop a method for the synthesis of nano-encapsulated PCMs to achieve enhanced structural stability and better fracture resistance and, thus, longer service life. The accumulated database of properties/performance of PCMs and synthesised nano-/micro-capsules from various techniques presented in the paper should serve as the most useful information for the production of nano-/micro-capsules with desirable characteristics for building construction application and further innovation of PCM technology.


Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 382
Author(s):  
Eduardo García-Martínez ◽  
José Francisco Sanz ◽  
Jesús Muñoz-Cruzado ◽  
Juan Manuel Perié

The Smart Grid is one of the most important solutions to boost electricity sharing from renewable energy sources. Its implementation adds new functionalities to power systems, which increases the electric grid complexity. To ensure grid stability and security, systems need flexible methods in order to be tested in a safe and economical way. A promising test technique is Power Hardware-In-the-Loop (PHIL), which combines the flexibility of Hardware-In-the-Loop (HIL) technique with power exchange. However, the acquisition of PHIL components usually represents a great expense for laboratories and, therefore, the setting up of the experiment involves making hard decisions. This paper provides a complete guideline and useful new tools for laboratories in order to set PHIL facilities up efficiently. First, a PHIL system selection guide is presented, which describes the selection process steps and the main system characteristics needed to perform a PHIL test. Furthermore, a classification proposal containing the desirable information to be obtained from a PHIL test paper for reproducibility purposes is given. Finally, this classification was used to develop a PHIL test online database, which was analysed, and the main gathered information with some use cases and conclusions are shown.


Technologies ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 47 ◽  
Author(s):  
Dario Assante ◽  
Clemente Capasso ◽  
Ottorino Veneri

In this paper, a new learning tool is proposed to train professional figures, such as entrepreneurs, engineers, and technicians, who need to improve their skills in the field of Internet of Energy. The proposed tool aims to cover the lack of experimental knowledge on new energy systems and to layer proper skills, which are useful to deal with challenges required by smart energy management in the new complex distributed configuration of the electric power systems, characterized by demand response services. This tool is based on a small-scale laboratory demonstrator, representative of a smart rural house, equipped with a measurement and control system. This demonstrator can be remotely accessed, through web server applications based on a low cost single-board computer. Trainers can have direct experience on the main concepts related to smart grids, renewable energy sources, electrochemical storage systems, and electric vehicles, through the use of the proposed tool managed by the web software interface.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4347
Author(s):  
Paweł Albrechtowicz ◽  
Jerzy Szczepanik

Phase shifting transformers (PSTs) are currently widely used in power systems to control power flow. In this manuscript, the results of the asymmetrical PST (APST) with the in-phase PST (called asymmetrical controllable PST-ACPST) were compared, allowing to control both longitudinal and quadrature voltage. The MATLAB simulation model of the ACPST was built to obtain influence of PST in selected models for selected parameters. Then the 30A laboratory PST device was built in the laboratory. The parameters of the MATLAB model were then adjusted to parameters of the real life PST model. This allowed verifying the results of the real life and computer simulations. Based on the ACPST simulation model, the APST model was built; for the given work conditions, the influence of both PSTs were compared. APST construction always resulted in higher output voltage than the input one. ACPST achieved the same power transfer for the lower output PST voltage, which is its main advantage. This dependency is a result of the greater ACPST angle compared to the classical APST. The ACPST also allowed adjusting longitudinal and quadrature voltages; therefore, this PST type can be installed in places where high flexibility is required, especially in systems with high renewable energy sources penetration.


2020 ◽  
pp. 28-37
Author(s):  
Oleksandra V. Kubatko ◽  
Diana O. Yaryomenko ◽  
Mykola O. Kharchenko ◽  
Ismail Y. A. Almashaqbeh

Interruptions in electricity supply may have a series of failures that can affect banking, telecommunications, traffic, and safety sectors. Due to the two-way interactive abilities, Smart Grid allows consumers to automatically redirect on failure, or shut down of the equipment. Smart Grid technologies are the costly ones; however, due to the mitigation of possible problems, they are economically sound. Smart grids can't operate without smart meters, which may easily transmit real-time power consumption data to energy data centers, helping the consumer to make effective decisions about how much energy to use and at what time of day. Smart Grid meters do allow the consumer to track and reduce energy consumption bills during peak hours and increase the corresponding consumption during minimum hours. At a higher level of management (e.g., on the level of separate region or country), the Smart Grid distribution system operators have the opportunity to increase the reliability of power supply primarily by detecting or preventing emergencies. Ukraine's energy system is currently outdated and cannot withstand current loads. High levels of wear of the main and auxiliary equipment of the power system and uneven load distribution in the network often lead to emergencies and power outages. The Smart Grid achievements and energy sustainability are also related to the energy trilemma, which consists of key core dimensions– Energy Security, Energy Equity, and Environmental Sustainability. To be competitive in the world energy market, the country has to organize efficiently the cooperation of public/private actors, governments, economic and social agents, environmental issues, and individual consumer behaviors. Ukraine gained 61 positions out of 128 countries in a list in 2019 on the energy trilemma index. In general, Ukraine has a higher than average energy security position and lower than average energy equity, and environmental sustainability positions. Given the fact that the number of renewable energy sources is measured in hundreds and thousands, network management is complicated and requires a Smart Grid rapid response. Keywords: economic development, Smart Grid, electricity supply, economic and environmental efficiency.


Sign in / Sign up

Export Citation Format

Share Document