scholarly journals Development of hybrid photo-wind power systems with a diesel generator to overcome energy shortages

2021 ◽  
Vol 270 ◽  
pp. 01029
Author(s):  
Faez Al-Rufaee ◽  
Laythи Abd Ali ◽  
Vladimir Kuvshinov

The paper discusses the possibilities of using hybrid composite structures to overcome the energy shortage in Iraq, as well as the development of an efficient system of solar, wind turbine diesel generators. In this article, a Diesel Generator is combined with a wind turbine and batteries on the basis that the sun’s energy is not constant over time. The simulation was carried out using the HOMER program, which allows a detailed analysis of the volume and power of energy generated by the proposed system. The HOMER program is used for technical, economic, and environmental assessments. According to the results of the study, it was established that the most effective solution for saving electricity and overcoming energy shortages is a system consisting of renewable sources, as well as a diesel generator with batteries. The results also show that renewable energy sources used in the hybrid system provide about 69.2% of the electricity generated. This certainly improves the reliability of the electricity generated and reduces the fuel and maintenance costs of diesel generators, as well as saving the environment. The analysis of optimal systems is explained in detail to find the most achievable autonomous system.

Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 776
Author(s):  
Byunghui Kim ◽  
Sang-June Park ◽  
Seokyoung Ahn ◽  
Myung-Gon Kim ◽  
Hyung-Gun Yang ◽  
...  

Although mega-watt class onshore and offshore wind power systems are used to generate power due to their cost-effectiveness, small wind power systems are important for household usages. Researchers have focused on aerodynamic characteristics as a conceptual design from their previous studies on Archimedes spiral wind turbines. Here, we verified the design of a small wind turbine AWM-750D (100 W capacity) via both numerical simulation and experimentation. We used commercial code ANSYS CFX for numerical simulation and compared turbulence models and surface roughness for determining the performance. To obtain reliable and robust blades, we analyzed the effective manufacturing method with Moldflow. Through a test with an open-suction type atmospheric boundary layer wind tunnel, we varied wind speed from 4.0 m/s to the rated value of 12.5 m/s and obtained 106 W, equivalent to a power coefficient of 0.205. In addition, we compared the numerical and experimental power vs. rotational speed and found the former is 6.5% lower than the latter. In this study, we proved that numerical simulations can act as design verification methods to predict wind turbine performances and reliable manufacturing. Through our research, we provided the prototype of a small wind turbine with 100 W to act as an efficient electric power supplier for households and also the stable manufacturing process for complex spiral blades using injection molding.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2062 ◽  
Author(s):  
Dante Ruiz-Robles ◽  
Jorge Ortíz-Marín ◽  
Vicente Venegas-Rebollar ◽  
Edgar L. Moreno-Goytia ◽  
David Granados-Lieberman ◽  
...  

High performance, highly efficient DC-DC converters play a key role in improving the penetration of renewable energy sources in the context of smart grids in applications such as solid-state transformers, built-in power drives in electric vehicles and interfacing photovoltaic and wind-power systems. Advanced medium-frequency transformers (MFTs) are fundamental to enhance DC-DC converters and determining its behavior, therefore MFT design procedures have become increasingly important in this context. This paper investigates which type of core material, between nanocrystalline and silicon steel, has the best properties for designing MFTs for distinct applications. Unlike to other proposals, in this work, two 1 kVA-120 V/240 V-1 kHz lab MFT prototypes, with a different type of core material, are developed for the purpose of comparing its physical characteristics, behavior, and performance under real-life conditions. A final section, the experimental results show that the nanocrystalline MFT has greater power density and efficiency. The results of this work introduce nanocrystalline MFTs as an option in a wider range of applications in niches in which other materials are currently used.


Author(s):  
Michael Negnevitsky ◽  
◽  
Dusan Nikolic ◽  
Martin de Groot ◽  
◽  
...  

Isolated power systems (IPSs) worldwide are traditionally powered by diesel generators that are very expensive to run and produce harmful emissions. In order to mitigate these problems, wind turbines are being introduced into existing IPSs. Although this integration has been reasonably effective at reducing running costs and emissions, high levels of wind penetration cause large system frequency variations, resulting in a prolonged synchronization process for newly dispatched diesel generators. Long synchronization can compromise the stability of a small IPS. This paper examines the diesel synchronization problem using a real IPS as a case study and offers a solution by introducing the concept of predictive synchronization based on adaptive neuro-fuzzy systems. Simulation results demonstrate a significant reduction in diesel generator synchronization times.


2018 ◽  
Vol 42 (5) ◽  
pp. 411-435 ◽  
Author(s):  
Sergey N Udalov ◽  
Andrey A Achitaev ◽  
Alexander G Pristup ◽  
Boris M Bochenkov ◽  
Yuri Pankratz ◽  
...  

The paper is devoted to investigations of dynamic processes in a local power system consisting of wind turbines with a magnetic continuously variable transmission. Due to low inertia of wind turbine generator rotors, there is a problem of ensuring dynamic stability at sharp load changes or at short circuits in an autonomous power system. To increase dynamic stability of the system, two algorithms for controlling a magnetic continuously variable transmission are presented. The first algorithm stabilizes a rotation speed of the high-speed rotor of a magnetic continuously variable transmission from the generator side in a local power system consisting of wind turbines with uniform synchronous generators with permanent magnets having equal moments of inertia. Undoubtedly, local power systems having only the wind turbines with equal mechanical inertia time constants are not widely used due to stochastic nature of wind energy. Therefore, wind power systems are combined with a diesel generator or a gas-turbine unit. Investigations show that the use of the only speed stabilization algorithm is not enough for such power systems, because there is a possibility for occurrence of asynchronous operation under specific power changes due to the difference in moments of inertia of generator rotors. Thus, the second algorithm uses the phase shift compensation in accordance with a primary generator in an autonomous power system consisting of non-uniform generators having different mechanical inertia time constants. As a primary generator, a diesel generator or a gas-turbine unit having a primary speed controller may be used. It should be noted that algorithms of stabilization for speed and phase angle are extended by an inertial circuit of aerodynamic compensation for torque of rotation from the wind turbine side to reduce loading on an energy storage unit of the magnetic continuously variable transmission at disturbances from the generator side and the turbine side.


2021 ◽  
Vol 897 (1) ◽  
pp. 012015
Author(s):  
Ronald Ayala Ramírez ◽  
Javier Tenesaca Chacaguasay ◽  
Juan Lata García

Abstract Recently, the idea of hybrid power systems (HES) has attracted interest for the electrification of isolated or energy efficient areas. This document examines the modelling and optimal dimensions of a hybrid microgrid using different dispatch strategies. The sizing of the HES components such as Photovoltaic panels, Batteries, Inverter, a Diesel generator has been optimized by three strategies: (i) load tracking, (ii) cycle load, and (iii) combined dispatch. The location of the case study is in a rural community in Ecuador whose load profile is 17 kW. By utilizing HOMER software, optimization for the HES was achieved with the Combined Dispatch strategy (CD) which presented the minimum levels in the net annual cost (NPC), initial capital, levelized cost of energy (LCOE) of $ 90,073.10, $ 21,208 and $ 0.2016 / kWh, respectively. The conclusions offer a guide to consider the resources and generation combination essential for the optimal operation of an island microgrid with different dispatch scenarios.


Eng ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 137-152
Author(s):  
Mohamad Issa ◽  
Hussein Ibrahim ◽  
Hatem Hosni ◽  
Adrian Ilinca ◽  
Miloud Rezkallah

In the context of electricity production in remote areas, the use of diesel generators, either alone or in hybridization with renewable energy sources, faces many technical problems. Indeed, the electrical instability that often characterizes the isolated networks, due to the fluctuating character of renewable resources and the high variability in the load profile, leads to the operation of the diesel generator in transient dynamic conditions, at low loads or outside prescribed environmental conditions. Furthermore, the extended operation of the diesel generator at low charge results in the condensation of combustion residues on the engine cylinder walls, which, after a certain time, increases friction, reduces the efficiency and increases fuel consumption. One way to solve this problem and to eliminate these deposits is to operate the engine at a higher speed until the operating temperature is reached. This paper explores the impact of the wind turbine penetration rate for hybrid wind–diesel systems and the effects of cold temperatures, high altitude, and other environmental operation conditions on diesel generators’ performances. We outlines the impacts of low load and environmental conditions such as ambient temperature, humidity, moisture, abrasive dust, cold and corrosive environments on the operation of modern diesel generators. The problem has been approached by examining the existing literature, researching damage cases, analyzing existing data, and assessing industrial experiences.


Author(s):  
Zin Mar Nyo

Not only GSM, WCDMA but also CDMA technology can be used in Myanmar but GSM pre-dominates in the market. There are over million unique subscribers across the country in 2013. Power supply for telecom becomes main challenges in Myanmar where the electricity can not access in rural area. To minimize deficit of power, the government has set a target to covert some of tower sites to renewable solutions by 2015. This paper proposes the use of a PV, wind and diesel generator hybrid system with storage element in order to determine the optimal configuration of renewable energy in Myanmar.  This paper discusses the development of a renewable energy sources (RES)  that  can  be  used  for  electric  power  supply  of  GSM  base  station  site  at  any  given  time and  considers  the  feasibility  of  developing  Solar  (photovoltaic)-Wind-Diesel  hybrid power  systems  for  supplying  electricity  to  off-grid  rural telecommunication.  The Hybrid Optimization Model for Electric Renewables (HOMER) was used  to  simulate  and  generate  feasible  solution  through  combinations of photovoltaic, Wind Turbines and Diesel  Generator with  a  minimum  levelised  cost  of  electricity supply and to  determine  the  technical feasibility of the system.


2019 ◽  
Vol 3 (2) ◽  
pp. 13 ◽  
Author(s):  
Mehdi Jahangiri

HOMER software functions as a tool for modeling and optimization of an energy generation micropower system based on renewable technologies. In this paper for the first time the monthly real load data have been used in HOMER to design a renewable-based microgrid in grid-connected mode for Kish Island, Iran. The calculations were performed in a way that the designed system could supply the load demand of the studied area with the lowest cost, least pollution, and highest reliability. To overcome the intermittency of renewable energy sources such as wind and solar, a combination of these sources in a hybrid system and installation of battery storage systems were considered. The solar radiation and wind speed data required by the software were obtained from the country’s meteorology and NASA website and used in the software. The analysis results of four scenarios, including national grid/diesel generator, national grid/diesel generator/solar cell, national grid/diesel generator/wind turbine, and national grid/diesel generator/solar cell/wind turbine, showed the prices per kWh of $0.483, $0.505, $0.472, $0.537, respectively. In these scenarios, the share of renewable energies was 0%, 8%, 11%, and 26%, respectively. The highest amount of electricity sold to the national grid was 1597095 kWh/y for the fourth scenario which had also the lowest rate of CO2 emissions by 4128650 kg/y.


Author(s):  
Arshad Hussain Jamali

Alternate energy sources such as hybrid renewable energy off-grid systems are under the focus of researchers to improve their reliability and feasibility for rural areas. A hybrid power system uses a combination of renewable as primary and fuel-based power systems as a backup. Reliability, affordability, and cost depend upon the number of power systems used and the efficiency of these systems. However, the hybrid system is facing different challenges such as high cost, fluctuations in power, and proper infrastructure. This study aimed to determine the best configuration for village Bakhar Jamali, having a total of 162 houses and a 380 kW peak load. This study has been carried out using HOMER Pros to check the different sets of hybrid configurations. To find optimal power different sets of schemes were carried out. It was concluded in this study that the combination of Wind turbine, Solar PV, Biogas Generator, Diesel generator, Battery, and Converter give the optimum hybrid system with the following rated capacity, 150 kW of Solar PV, Specification of 3 kW of 50 Wind Turbine, Auto size Diesel Generator of 420 kW, Biogas Generator of 150 kW, Number of Batteries of 1 kWh 3832 and Converter capacity of 470 kW.


Sign in / Sign up

Export Citation Format

Share Document