scholarly journals The Impact of Climate Change on Swiss Hydropower

2018 ◽  
Vol 10 (7) ◽  
pp. 2541 ◽  
Author(s):  
Jonas Savelsberg ◽  
Moritz Schillinger ◽  
Ingmar Schlecht ◽  
Hannes Weigt

Hydropower represents an important pillar of electricity systems in many countries. It not only plays an important role in mitigating climate change, but is also subject to climate-change impacts. In this paper, we use the Swiss electricity market model Swissmod to study the effects of changes in water availability due to climate change on Swiss hydropower. Swissmod is an electricity dispatch model with a plant-level representation of 96% of Swiss hydropower plants and their interrelations within cascade structures. Using this detailed model in combination with spatially disaggregated climate-change runoff projections for Switzerland, we show that climate change has ambiguous impacts on hydropower and on the overall electricity system. Electricity prices and overall system costs increase under dry conditions and decrease under average or wet conditions. While the change of seasonal patterns, with a shift to higher winter runoff, has positive impacts, the overall yearly inflow varies under hydrological conditions. While average and wet years yield an increase in inflows and revenues, dry years become drier, resulting in the opposite effect. Even though different in magnitude, the direction of impacts persists when applying the same changes in inflows to the 2050 electricity system.

Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3098
Author(s):  
Ritter ◽  
Meyer ◽  
Koch ◽  
Haller ◽  
Bauknecht ◽  
...  

In order to achieve a high renewable share in the electricity system, a significant expansion of cross-border exchange capacities is planned. Historically, the actual expansion of interconnector capacities has significantly lagged behind the planned expansion. This study examines the impact that such continued delays would have when compared to a strong interconnector expansion in an ambitious energy transition scenario. For this purpose, scenarios for the years 2030, 2040, and 2050 are examined using the electricity market model PowerFlex EU. The analysis reveals that both CO2 emissions and variable costs of electricity generation increase if interconnector expansion is delayed. This effect is most significant in the scenario year 2050, where lower connectivity leads roughly to a doubling of both CO2 emissions and variable costs of electricity generation. This increase results from a lower level of European electricity trading, a curtailment of electricity from a renewable energy source (RES-E), and a corresponding higher level of conventional electricity generation. Most notably, in Southern and Central Europe, less interconnection leads to higher use of natural gas power plants since less renewable electricity from Northern Europe can be integrated into the European grid.


2020 ◽  
Vol 20 (7) ◽  
pp. 2530-2546
Author(s):  
Mohammad Reza Goodarzi ◽  
Hamed Vagheei ◽  
Rabi H. Mohtar

Abstract The interdependent fundamental systems, water and energy, face abundant challenges, one of which is climate change, which is expected to aggravate water and energy securities. The hydropower industry's benefits have led to its development and growth around the world. Nonetheless, climate change is expected to disturb the future performance of hydropower plants. This study looks at the Seimareh Hydropower Plant to assess the potential vulnerability of hydropower plants to climate change. Results indicate that climate change will affect the area's hydrological variables and suggest an increase in temperatures and decrease in precipitation during a 30-year future period (2040–2069). It is predicted that Seimareh Dam's inflow will decrease by between 5.2% and 13.4% in the same period. These hydrological changes will affect the Seimareh plant's performance: current predictions are that the total energy produced will decrease by between 8.4% and 16.3%. This research indicates the necessity of considering climate change impacts in designing and maintaining hydraulic structures to reach their optimal performance.


2010 ◽  
Vol 278 (1712) ◽  
pp. 1661-1669 ◽  
Author(s):  
David Alonso ◽  
Menno J. Bouma ◽  
Mercedes Pascual

Climate change impacts on malaria are typically assessed with scenarios for the long-term future. Here we focus instead on the recent past (1970–2003) to address whether warmer temperatures have already increased the incidence of malaria in a highland region of East Africa. Our analyses rely on a new coupled mosquito–human model of malaria, which we use to compare projected disease levels with and without the observed temperature trend. Predicted malaria cases exhibit a highly nonlinear response to warming, with a significant increase from the 1970s to the 1990s, although typical epidemic sizes are below those observed. These findings suggest that climate change has already played an important role in the exacerbation of malaria in this region. As the observed changes in malaria are even larger than those predicted by our model, other factors previously suggested to explain all of the increase in malaria may be enhancing the impact of climate change.


2021 ◽  
Author(s):  
Simon Ricard ◽  
Philippe Lucas-Picher ◽  
François Anctil

Abstract. Statistical post-processing of climate model outputs is a common hydroclimatic modelling practice aiming to produce climate scenarios that better fit in-situ observations and to produce reliable stream flows forcing calibrated hydrologic models. Such practice is however criticized for disrupting the physical consistency between simulated climate variables and affecting the trends in climate change signals imbedded within raw climate simulations. It also requires abundant good-quality meteorological observations, which are not available for many regions in the world. A simplified hydroclimatic modelling workflow is proposed to quantify the impact of climate change on water discharge without resorting to meteorological observations, nor for statistical post-processing of climate model outputs, nor for calibrating hydrologic models. By combining asynchronous hydroclimatic modelling, an alternative framework designed to construct hydrologic scenarios without resorting to meteorological observations, and quantile perturbation applied to streamflow observations, the proposed workflow produces sound and plausible hydrologic scenarios considering: (1) they preserve trends and physical consistency between simulated climate variables, (2) are implemented from a modelling cascades despite observation scarcity, and (3) support the participation of end-users in producing and interpreting climate change impacts on water resources. The proposed modelling workflow is implemented over four subcatchments of the Chaudière River, Canada, using 9 North American CORDEX simulations and a pool of lumped conceptual hydrologic models. Forced with raw climate model outputs, hydrologic models are calibrated over the reference period according to a calibration metric designed to function with temporally uncorrelated observed and simulated streamflow values. Perturbation factors are defined by relating each simulated streamflow quantiles over both reference and future periods. Hydrologic scenarios are finally produced by applying perturbation factors to available streamflow observations.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2342
Author(s):  
Wangang Liu ◽  
Yiping Chen ◽  
Xinhua He ◽  
Ping Mao ◽  
Hanwen Tian

Global food insecurity is becoming more severe under the threat of rising global carbon dioxide concentrations, increasing population, and shrinking farmlands and their degeneration. We acquired the ISI Web of Science platform for over 31 years (1988–2018) to review the research on how climate change impacts global food security, and then performed cluster analysis and research hotspot analysis with VosViewer software. We found there were two drawbacks that exist in the current research. Firstly, current field research data were defective because they were collected from various facilities and were hard to integrate. The other drawback is the representativeness of field research site selection as most studies were carried out in developed countries and very few in developing countries. Therefore, more attention should be paid to developing countries, especially some African and Asian countries. At the same time, new modified mathematical models should be utilized to process and integrate the data from various facilities and regions. Finally, we suggested that governments and organizations across the world should be united to wrestle with the impact of climate change on food security.


Biology ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 199 ◽  
Author(s):  
Konstantinos Kougioumoutzis ◽  
Ioannis P. Kokkoris ◽  
Maria Panitsa ◽  
Panayiotis Trigas ◽  
Arne Strid ◽  
...  

Human-induced biodiversity loss has been accelerating since the industrial revolution. The climate change impacts will severely alter the biodiversity and biogeographical patterns at all scales, leading to biotic homogenization. Due to underfunding, a climate smart, conservation-prioritization scheme is needed to optimize species protection. Spatial phylogenetics enable the identification of endemism centers and provide valuable insights regarding the eco-evolutionary and conservation value, as well as the biogeographical origin of a given area. Many studies exist regarding the conservation prioritization of mainland areas, yet none has assessed how climate change might alter the biodiversity and biogeographical patterns of an island biodiversity hotspot. Thus, we conducted a phylogenetically informed, conservation prioritization study dealing with the effects of climate change on Crete’s plant diversity and biogeographical patterns. Using several macroecological analyses, we identified the current and future endemism centers and assessed the impact of climate change on the biogeographical patterns in Crete. The highlands of Cretan mountains have served as both diversity cradles and museums, due to their stable climate and high topographical heterogeneity, providing important ecosystem services. Historical processes seem to have driven diversification and endemic species distribution in Crete. Due to the changing climate and the subsequent biotic homogenization, Crete’s unique bioregionalization, which strongly reminiscent the spatial configuration of the Pliocene/Pleistocene Cretan paleo-islands, will drastically change. The emergence of the ‘Anthropocene’ era calls for the prioritization of biodiversity-rich areas, serving as mixed-endemism centers, with high overlaps among protected areas and climatic refugia.


2019 ◽  
Vol 11 (8) ◽  
pp. 2450 ◽  
Author(s):  
Noora Veijalainen ◽  
Lauri Ahopelto ◽  
Mika Marttunen ◽  
Jaakko Jääskeläinen ◽  
Ritva Britschgi ◽  
...  

Severe droughts cause substantial damage to different socio-economic sectors, and even Finland, which has abundant water resources, is not immune to their impacts. To assess the implications of a severe drought in Finland, we carried out a national scale drought impact analysis. Firstly, we simulated water levels and discharges during the severe drought of 1939–1942 (the reference drought) in present-day Finland with a hydrological model. Secondly, we estimated how climate change would alter droughts. Thirdly, we assessed the impact of drought on key water use sectors, with a focus on hydropower and water supply. The results indicate that the long-lasting reference drought caused the discharges to decrease at most by 80% compared to the average annual minimum discharges. The water levels generally fell to the lowest levels in the largest lakes in Central and South-Eastern Finland. Climate change scenarios project on average a small decrease in the lowest water levels during droughts. Severe drought would have a significant impact on water-related sectors, reducing water supply and hydropower production. In this way drought is a risk multiplier for the water–energy–food security nexus. We suggest that the resilience to droughts could be improved with region-specific drought management plans and by including droughts in existing regional preparedness exercises.


2002 ◽  
Vol 6 (2) ◽  
pp. 197-209 ◽  
Author(s):  
F. Bouraoui ◽  
L. Galbiati ◽  
G. Bidoglio

Abstract. This study assessed the impact of potential climate change on the nutrient loads to surface and sub-surface waters from agricultural areas and was conducted using the Soil and Water Assessment Tool (SWAT) model. The study focused on a 3500 km2 catchment located in northern England, the Yorkshire Ouse. The SWAT model was calibrated and validated using sets of five years' measurements of nitrate and ortho-phosphorus concentrations and water flow. To increase the reliability of the hydrological model predictions, an uncertainty analysis was conducted by perturbing input parameters using a Monte-Carlo technique. The SWAT model was then run using a baseline scenario corresponding to an actual measured time series of daily temperature and precipitation, and six climate change scenarios. Because of the increase in temperature, all climate scenarios introduced an increase of actual evapotranspiration. Faster crop growth and an increased nutrient uptake resulted, as did an increase of annual losses of total nitrogen and phosphorus, however, with strong seasonal differences. Keywords: SWAT model, climate change, nutrient loads


Sign in / Sign up

Export Citation Format

Share Document