scholarly journals Effect of Inlet Air Heating on Gas Turbine Efficiency under Partial Load

Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3327 ◽  
Author(s):  
ZhiTan Liu ◽  
XiaoDong Ren ◽  
ZhiYuan Yan ◽  
HongFei Zhu ◽  
Tao Zhang ◽  
...  

A novel heating technology is presented to analyze the influence of inlet air heating on gas turbine efficiency under partial load. This technology uses the waste heat of a low-temperature heat sources, which includes but is not limited to the exhaust gas of a combined-cycle heat-recovery steam generator or a single-cycle gas turbine. A calculation model of the equilibrium running point is used for the given load and the characteristic curves of the compressor and the turbine to study the mechanism of the inlet air heating technology. Then, the equilibrium running line is calculated and drawn in the characteristic curves of the compressor and the turbine. The factors for gas turbine efficiency are discussed through the calculated equilibrium running line. The results show that an increase in inlet air temperature has considerable potential for improving gas turbine efficiency due to the increase in compressor and turbine efficiency. This finding is different from traditional viewpoints. Meanwhile, each partial load has an optimum heating temperature which becomes higher when the load is lower.

Author(s):  
A.A. Filimonova ◽  
◽  
N.D. Chichirova ◽  
A.A. Chichirov ◽  
A.A. Batalova ◽  
...  

The article provides an overview of modern high-performance combined-cycle plants and gas turbine plants with waste heat boilers. The forecast for the introduction of gas turbine equipment at TPPs in the world and in Russia is presented. The classification of gas turbines according to the degree of energy efficiency and operational characteristics is given. Waste heat boilers are characterized in terms of design and associated performance and efficiency. To achieve high operating parameters of gas turbine and boiler equipment, it is necessary to use, among other things, modern water treatment equipment. The article discusses modern effective technologies, the leading place among which is occupied by membrane, and especially baromembrane methods of preparing feed water-waste heat boilers. At the same time, the ion exchange technology remains one of the most demanded at TPPs in the Russian Federation.


Author(s):  
David J. Olsheski ◽  
William W. Schulke

Traditionally commercial marine propulsion needs have been met with direct drive reciprocating prime movers. In order to increase efficiency, simplify installation and maintenance accessibility, and increase cargo / passenger capacity; indirect electric drive gas and steam turbine combined cycle prime movers are being introduced to marine propulsion systems. One such application is the Royal Caribbean Cruise Line (RCCL) Millennium Class ship. This commercial vessel has two aero-derivative gas turbine generator sets with a single waste heat recovery steam turbine generator set. Each is controlled by independent microprocessor based digital control systems. This paper addresses only the gas turbine control system architecture and the unique safety and dynamic features that are integrated into the control system for this application.


Author(s):  
Hans Joachim Krautz ◽  
Rolf Chalupnik ◽  
Franz Stuhlmu¨ller

A 200 kWth test plant was constructed by BTU Cottbus for the purpose of developing a special variant of coal conversion based on 2nd generation PFBC. This concept, primarily to be used for generating power from lignite, employs a circulating type fluidized bed and is characterized by a design that combines the two air-blown steps “partial gasification” and “residual char combustion” in a single component. The subject of this paper is to develop an overall power plant concept based on this process, and to perform the associated thermodynamic calculations. In addition to the base concept with one large heavy-duty Siemens gas turbine V94.3A fired with Lausitz dried lignite (19% H2O), further versions with variation of Siemens gas turbine model (V94.3A and V64.3A), the water content of the fuel fired (raw lignite with more than 52% H2O or dried lignite) as well as the method of drying the coal were investigated. Common assumptions for all versions were ISO conditions for the ambient air and a condenser pressure of 0.05 bar. As expected, the calculations yielded very attractive net efficiencies of almost 50% (LHV based) for a variant with the small V64.3A gas turbine and up to more than 55% for the large plants with the V94.3A gas turbine. It was further demonstrated that thermodynamic integration of an advanced, innovative coal drying process (e.g. fluidized-bed drying with waste heat utilization) causes an additional gain in net efficiency of about three percentage points compared with the variant of firing lignite that was first dried externally. In addition to the basic function of the coal conversion system, it was necessary to also assume preconditions such as complete carbon conversion, reliable hot gas cleaning facilities and fuel gas properties that are acceptable for combustion in the gas turbine. Put abstract text here.


Energy ◽  
2019 ◽  
Vol 178 ◽  
pp. 386-399 ◽  
Author(s):  
Yongping Yang ◽  
Ziwei Bai ◽  
Guoqiang Zhang ◽  
Yongyi Li ◽  
Ziyu Wang ◽  
...  

Author(s):  
A. Hofstädter ◽  
H. U. Frutschi ◽  
H. Haselbacher

Steam injection is a well-known principle for increasing gas turbine efficiency by taking advantage of the relatively high gas turbine exhaust temperatures. Unfortunately, performance is not sufficiently improved compared with alternative bottoming cycles. However, previously investigated supplements to the STIG-principle — such as sequential combustion and consideration of a back pressure steam turbine — led to a remarkable increase in efficiency. The cycle presented in this paper includes a further improvement: The steam, which exits from the back pressure steam turbine at a rather low temperature, is no longer led directly into the combustion chamber. Instead, it reenters the boiler to be further superheated. This modification yields additional improvement of the thermal efficiency due to a significant reduction of fuel consumption. Taking into account the simpler design compared with combined-cycle power plants, the described type of an advanced STIG-cycle (A-STIG) could represent an interesting alternative regarding peak and medium load power plants.


Author(s):  
B. Becker ◽  
H. H. Finckh ◽  
R. Meyer-Pittroff

In gas-cooled solar power plants the radiant energy of the sun is transferred to the cycle fluid in a cavity type solar receiver and converted into electric energy by means of a combined gas and steam turbine cycle incorporating a waste heat steam generator. The design and optimization of the energy conversion system in accordance with solar-specific considerations are described with particular regard to the gas turbine. In designing the energy conversion system several variants on the combined cycle with waste heat steam generator are investigated and special measures for the improvement of the cycle efficiency, such as the refinement of the steam process through the addition of pressure stages are introduced. It is demonstrated that the solar power plant meets the requirements both for straight solar and constant load operation with fossil fuel substitution. In order to establish the possibilities of attaining high part-load efficiencies in straight solar operation, two modes, variable and constant speed of the gas turbine, are compared with one another.


Author(s):  
Ir. Ted Wiekmeijer

The paper will deal with new developments on basis of the ideas, laid down in ASME paper 90-GT-180, presented at the Brussels Conference. In this former paper a combination of incinerators and cogen systems was described. New development show, that some of these ideas can also be used in cogen plants, in which all steam is raised and superheated in a waste heat boiler behind a high grade fuel fired gas turbine (natural gas or equivalent). This paper will deal give a description of the new system. A comparison will be made with conventional cogen systems, comprising of a gas turbine, a dual pressure non-fired waste heat boiler and a condensing steam turbine. On basis of a particular case study both the technical and financial performances will be compared with each other.


Sign in / Sign up

Export Citation Format

Share Document