scholarly journals Condition Monitoring in Photovoltaic Systems by Semi-Supervised Machine Learning

Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 584
Author(s):  
Lars Maaløe ◽  
Ole Winther ◽  
Sergiu Spataru ◽  
Dezso Sera

With the rapid increase in photovoltaic energy production, there is a need for smart condition monitoring systems ensuring maximum throughput. Complex methods such as drone inspections are costly and labor intensive; hence, condition monitoring by utilizing sensor data is attractive. In order to recognize meaningful patterns from the sensor data, there is a need for expressive machine learning models. However, supervised machine learning, e.g., regression models, suffer from the cumbersome process of annotating data. By utilizing a recent state-of-the-art semi-supervised machine learning based on probabilistic modeling, we were able to perform condition monitoring in a photovoltaic system with high accuracy and only a small fraction of annotated data. The modeling approach utilizes all the unsupervised data by jointly learning a low-dimensional feature representation and a classification model in an end-to-end fashion. By analysis of the feature representation, new internal condition monitoring states can be detected, proving a practical way of updating the model for better monitoring. We present (i) an analysis that compares the proposed model to corresponding purely supervised approaches, (ii) a study on the semi-supervised capabilities of the model, and (iii) an experiment in which we simulated a real-life condition monitoring system.

2019 ◽  
pp. 1-8 ◽  
Author(s):  
Tomasz Oliwa ◽  
Steven B. Maron ◽  
Leah M. Chase ◽  
Samantha Lomnicki ◽  
Daniel V.T. Catenacci ◽  
...  

PURPOSE Robust institutional tumor banks depend on continuous sample curation or else subsequent biopsy or resection specimens are overlooked after initial enrollment. Curation automation is hindered by semistructured free-text clinical pathology notes, which complicate data abstraction. Our motivation is to develop a natural language processing method that dynamically identifies existing pathology specimen elements necessary for locating specimens for future use in a manner that can be re-implemented by other institutions. PATIENTS AND METHODS Pathology reports from patients with gastroesophageal cancer enrolled in The University of Chicago GI oncology tumor bank were used to train and validate a novel composite natural language processing-based pipeline with a supervised machine learning classification step to separate notes into internal (primary review) and external (consultation) reports; a named-entity recognition step to obtain label (accession number), location, date, and sublabels (block identifiers); and a results proofreading step. RESULTS We analyzed 188 pathology reports, including 82 internal reports and 106 external consult reports, and successfully extracted named entities grouped as sample information (label, date, location). Our approach identified up to 24 additional unique samples in external consult notes that could have been overlooked. Our classification model obtained 100% accuracy on the basis of 10-fold cross-validation. Precision, recall, and F1 for class-specific named-entity recognition models show strong performance. CONCLUSION Through a combination of natural language processing and machine learning, we devised a re-implementable and automated approach that can accurately extract specimen attributes from semistructured pathology notes to dynamically populate a tumor registry.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marcin Grochowina ◽  
Lucyna Leniowska ◽  
Agnieszka Gala-Błądzińska

Abstract Pattern recognition and automatic decision support methods provide significant advantages in the area of health protection. The aim of this work is to develop a low-cost tool for monitoring arteriovenous fistula (AVF) with the use of phono-angiography method. This article presents a developed and diagnostic device that implements classification algorithms to identify 38 patients with end stage renal disease, chronically hemodialysed using an AVF, at risk of vascular access stenosis. We report on the design, fabrication, and preliminary testing of a prototype device for non-invasive diagnosis which is very important for hemodialysed patients. The system includes three sub-modules: AVF signal acquisition, information processing and classification and a unit for presenting results. This is a non-invasive and inexpensive procedure for evaluating the sound pattern of bruit produced by AVF. With a special kind of head which has a greater sensitivity than conventional stethoscope, a sound signal from fistula was recorded. The proces of signal acquisition was performed by a dedicated software, written specifically for the purpose of our study. From the obtained phono-angiogram, 23 features were isolated for vectors used in a decision-making algorithm, including 6 features based on the waveform of time domain, and 17 features based on the frequency spectrum. Final definition of the feature vector composition was obtained by using several selection methods: the feature-class correlation, forward search, Principal Component Analysis and Joined-Pairs method. The supervised machine learning technique was then applied to develop the best classification model.


2020 ◽  
Vol 11 ◽  
Author(s):  
Yi Guo ◽  
Yushan Liu ◽  
Wenjie Ming ◽  
Zhongjin Wang ◽  
Junming Zhu ◽  
...  

Purpose: We are aiming to build a supervised machine learning-based classifier, in order to preoperatively distinguish focal cortical dysplasia (FCD) from glioneuronal tumors (GNTs) in patients with epilepsy.Methods: This retrospective study was comprised of 96 patients who underwent epilepsy surgery, with the final neuropathologic diagnosis of either an FCD or GNTs. Seven classical machine learning algorithms (i.e., Random Forest, SVM, Decision Tree, Logistic Regression, XGBoost, LightGBM, and CatBoost) were employed and trained by our dataset to get the classification model. Ten features [i.e., Gender, Past history, Age at seizure onset, Course of disease, Seizure type, Seizure frequency, Scalp EEG biomarkers, MRI features, Lesion location, Number of antiepileptic drug (AEDs)] were analyzed in our study.Results: We enrolled 56 patients with FCD and 40 patients with GNTs, which included 29 with gangliogliomas (GGs) and 11 with dysembryoplasic neuroepithelial tumors (DNTs). Our study demonstrated that the Random Forest-based machine learning model offered the best predictive performance on distinguishing the diagnosis of FCD from GNTs, with an F1-score of 0.9180 and AUC value of 0.9340. Furthermore, the most discriminative factor between FCD and GNTs was the feature “age at seizure onset” with the Chi-square value of 1,213.0, suggesting that patients who had a younger age at seizure onset were more likely to be diagnosed as FCD.Conclusion: The Random Forest-based machine learning classifier can accurately differentiate FCD from GNTs in patients with epilepsy before surgery. This might lead to improved clinician confidence in appropriate surgical planning and treatment outcomes.


2019 ◽  
Vol 38 (9) ◽  
pp. 1063-1097 ◽  
Author(s):  
Xingye Da ◽  
Jessy Grizzle

To overcome the obstructions imposed by high-dimensional bipedal models, we embed a stable walking motion in an attractive low-dimensional surface of the system’s state space. The process begins with trajectory optimization to design an open-loop periodic walking motion of the high-dimensional model and then adding to this solution a carefully selected set of additional open-loop trajectories of the model that steer toward the nominal motion. A drawback of trajectories is that they provide little information on how to respond to a disturbance. To address this shortcoming, supervised machine learning is used to extract a low-dimensional state-variable realization of the open-loop trajectories. The periodic orbit is now an attractor of the low-dimensional state-variable model but is not attractive in the full-order system. We then use the special structure of mechanical models associated with bipedal robots to embed the low-dimensional model in the original model in such a manner that the desired walking motions are locally exponentially stable. The design procedure is first developed for ordinary differential equations and illustrated on a simple model. The methods are subsequently extended to a class of hybrid models and then realized experimentally on an Atrias-series 3D bipedal robot.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Rafael Vega Vega ◽  
Héctor Quintián ◽  
Carlos Cambra ◽  
Nuño Basurto ◽  
Álvaro Herrero ◽  
...  

Present research proposes the application of unsupervised and supervised machine-learning techniques to characterize Android malware families. More precisely, a novel unsupervised neural-projection method for dimensionality-reduction, namely, Beta Hebbian Learning (BHL), is applied to visually analyze such malware. Additionally, well-known supervised Decision Trees (DTs) are also applied for the first time in order to improve characterization of such families and compare the original features that are identified as the most important ones. The proposed techniques are validated when facing real-life Android malware data by means of the well-known and publicly available Malgenome dataset. Obtained results support the proposed approach, confirming the validity of BHL and DTs to gain deep knowledge on Android malware.


2020 ◽  
Vol 25 (4) ◽  
pp. 174-189 ◽  
Author(s):  
Guillaume  Palacios ◽  
Arnaud Noreña ◽  
Alain Londero

Introduction: Subjective tinnitus (ST) and hyperacusis (HA) are common auditory symptoms that may become incapacitating in a subgroup of patients who thereby seek medical advice. Both conditions can result from many different mechanisms, and as a consequence, patients may report a vast repertoire of associated symptoms and comorbidities that can reduce dramatically the quality of life and even lead to suicide attempts in the most severe cases. The present exploratory study is aimed at investigating patients’ symptoms and complaints using an in-depth statistical analysis of patients’ natural narratives in a real-life environment in which, thanks to the anonymization of contributions and the peer-to-peer interaction, it is supposed that the wording used is totally free of any self-limitation and self-censorship. Methods: We applied a purely statistical, non-supervised machine learning approach to the analysis of patients’ verbatim exchanged on an Internet forum. After automated data extraction, the dataset has been preprocessed in order to make it suitable for statistical analysis. We used a variant of the Latent Dirichlet Allocation (LDA) algorithm to reveal clusters of symptoms and complaints of HA patients (topics). The probability of distribution of words within a topic uniquely characterizes it. The convergence of the log-likelihood of the LDA-model has been reached after 2,000 iterations. Several statistical parameters have been tested for topic modeling and word relevance factor within each topic. Results: Despite a rather small dataset, this exploratory study demonstrates that patients’ free speeches available on the Internet constitute a valuable material for machine learning and statistical analysis aimed at categorizing ST/HA complaints. The LDA model with K = 15 topics seems to be the most relevant in terms of relative weights and correlations with the capability to individualizing subgroups of patients displaying specific characteristics. The study of the relevance factor may be useful to unveil weak but important signals that are present in patients’ narratives. Discussion/Conclusion: We claim that the LDA non-supervised approach would permit to gain knowledge on the patterns of ST- and HA-related complaints and on patients’ centered domains of interest. The merits and limitations of the LDA algorithms are compared with other natural language processing methods and with more conventional methods of qualitative analysis of patients’ output. Future directions and research topics emerging from this innovative algorithmic analysis are proposed.


2020 ◽  
Vol 101 (7) ◽  
Author(s):  
Zheng-Zhi Sun ◽  
Cheng Peng ◽  
Ding Liu ◽  
Shi-Ju Ran ◽  
Gang Su

2013 ◽  
Vol 756-759 ◽  
pp. 3506-3510
Author(s):  
Qiu Chen Wang ◽  
Lei Wang ◽  
Ji Xiang

Traffic classification is a critical technology in the areas of network management and security monitoring. Traditional port-based and payload-based classification are no longer effective due to the fact that many applications utilize unpredictable port numbers and packet encryption. Researchers tend to apply machine learning (ML) techniques to identify the traffic flows by recognizing statistical features. Unfortunately, looking back upon the related work, most of the ML-based classification algorithms have similar performance, and what really matters now is how to optimize these techniques. In this paper, we analyzed two critical issues (Feature Selection, Configuration of Parameters) of ML classification, and presented the corresponding viable methods to optimize the classification model. This paper also reported the experimental evaluation to assess the performance improvements introduced by our optimized methods; experimental results on real-life datasets and network traffic show that the classification model successfully achieves significant accuracy improvement.


2021 ◽  
Author(s):  
Marc Raphael ◽  
Michael Robitaille ◽  
Jeff Byers ◽  
Joseph Christodoulides

Abstract Machine learning algorithms hold the promise of greatly improving live cell image analysis by way of (1) analyzing far more imagery than can be achieved by more traditional manual approaches and (2) by eliminating the subjective nature of researchers and diagnosticians selecting the cells or cell features to be included in the analyzed data set. Currently, however, even the most sophisticated model based or machine learning algorithms require user supervision, meaning the subjectivity problem is not removed but rather incorporated into the algorithm’s initial training steps and then repeatedly applied to the imagery. To address this roadblock, we have developed a self-supervised machine learning algorithm that recursively trains itself directly from the live cell imagery data, thus providing objective segmentation and quantification. The approach incorporates an optical flow algorithm component to self-label cell and background pixels for training, followed by the extraction of additional feature vectors for the automated generation of a cell/background classification model. Because it is self-trained, the software has no user-adjustable parameters and does not require curated training imagery. The algorithm was applied to automatically segment cells from their background for a variety of cell types and five commonly used imaging modalities - fluorescence, phase contrast, differential interference contrast (DIC), transmitted light and interference reflection microscopy (IRM). The approach is broadly applicable in that it enables completely automated cell segmentation for long-term live cell phenotyping applications, regardless of the input imagery’s optical modality, magnification or cell type.


Sign in / Sign up

Export Citation Format

Share Document