scholarly journals A CAV Platoon Control Method for Isolated Intersections: Guaranteed Feasible Multi-Objective Approach with Priority

Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 625 ◽  
Author(s):  
Chen Wang ◽  
Yulu Dai ◽  
Jingxin Xia

This paper proposed a multi-objective guaranteed feasible connected and autonomous vehicle (CAV) platoon control method for signalized isolated intersections with priorities. Specifically, we prioritized the intersection throughput and traffic efficiency under a pre-defined signal cycle, based on which we minimized fuel consumption and emissions for CAV platoons. Longitudinal safety was also considered as a necessary condition. To handle the aforementioned targets, we firstly designed a vehicular sub-platoon splitting algorithm based on Farkas lemma to accommodate a maximum number of vehicles for each signal green time phase. Secondly, the CAV optimal trajectories control algorithm was designed as a centralized cooperative model predictive control (MPC). Moreover, the optimal control problem was formulated as discrete linear quadratic control problems with constraints with receding predictive horizons, which can be efficiently solved by quadratic programming after reformulation. For rigor, the proofs of the recursive feasibility and asymptotic stability of our proposed predictive control model were provided. For evaluation, the performance of the control algorithm was compared against a non-cooperative distributed CAV control through simulation. It was found that the proposed method can significantly enhance both traffic efficiency and energy efficiency with ensured safety for CAV platoons at urban signalized intersections.

2011 ◽  
Vol 317-319 ◽  
pp. 1373-1384 ◽  
Author(s):  
Juan Chen ◽  
Chang Liang Yuan

To solve the traffic congestion control problem on oversaturated network, the total delay is classified into two parts: the feeding delay and the non-feeding delay, and the control problem is formulated as a conflicted multi-objective control problem. The simultaneous control of multiple objectives is different from single objective control in that there is no unique solution to multi-objective control problems(MOPs). Multi-objective control usually involves many conflicting and incompatible objectives, therefore, a set of optimal trade-off solutions known as the Pareto-optimal solutions is required. Based on this background, a modified compatible control algorithm(MOCC) hunting for suboptimal and feasible region as the control aim rather than precise optimal point is proposed in this paper to solve the conflicted oversaturated traffic network control problem. Since it is impossible to avoid the inaccurate system model and input disturbance, the controller of the proposed multi-objective compatible control strategy is designed based on feedback control structure. Besides, considering the difference between control problem and optimization problem, user's preference are incorporated into multi-objective compatible control algorithm to guide the search direction. The proposed preference based compatible optimization control algorithm(PMOCC) is used to solve the oversaturated traffic network control problem in a core area of eleven junctions under the simulation environment. It is proved that the proposed compatible optimization control algorithm can handle the oversaturated traffic network control problem effectively than the fixed time control method.


Algorithms ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 220 ◽  
Author(s):  
Juan Chen ◽  
Yuxuan Yu ◽  
Qi Guo

This paper proposes a model predictive control method based on dynamic multi-objective optimization algorithms (MPC_CPDMO-NSGA-II) for reducing freeway congestion and relieving environment impact simultaneously. A new dynamic multi-objective optimization algorithm based on clustering and prediction with NSGA-II (CPDMO-NSGA-II) is proposed. The proposed CPDMO-NSGA-II algorithm is used to realize on-line optimization at each control step in model predictive control. The performance indicators considered in model predictive control consists of total time spent, total travel distance, total emissions and total fuel consumption. Then TOPSIS method is adopted to select an optimal solution from Pareto front obtained from MPC_CPDMO-NSGA-II algorithm and is applied to the VISSIM environment. The control strategies are variable speed limit (VSL) and ramp metering (RM). In order to verify the performance of the proposed algorithm, the proposed algorithm is tested under the simulation environment originated from a real freeway network in Shanghai with one on-ramp. The result is compared with fixed speed limit strategy and single optimization method respectively. Simulation results show that it can effectively alleviate traffic congestion, reduce emissions and fuel consumption, as compared with fixed speed limit strategy and classical model predictive control method based on single optimization method.


2021 ◽  
Vol 2085 (1) ◽  
pp. 012008
Author(s):  
Jimin Yu ◽  
Zhi Yong ◽  
Yousi Wang

Abstract In order to solve the problem of path tracking of a quadrotor UAV, this paper proposes a track tracking control method which combines Model Predictive Control algorithm and PD control method. Model Predictive Control algorithm can generate control input for formation flight and track the specified trajectory. PD control can achieve rapid response to attitude and adjust error quickly. The simulation results verify the effectiveness of the proposed control method.


2011 ◽  
Vol 383-390 ◽  
pp. 2242-2248
Author(s):  
Yan Ping Wang

This paper presents the algorithm of model predictive control (MPC) based on BP neural network to the burden system of the heating boiler. Because the burden system of the heating boiler is complex, the proposed approach uses steady, effective way to control the boiler. There is a closed-loop, repeating online optimization, model-based control algorithm which deals with the feedback information and the quantity of the fuel entering the boiler by the way of multi-step future predicting and compensating based on BP neural network. By simulation, it is demonstrated that the burden system of the heating boiler using MPC as control method is better in performance than the traditional PID. Besides, it is compliant to the model of the controlled object, especially to those which parameters of the model are variable.


2020 ◽  
pp. 107754632093375
Author(s):  
Xinzheng Lu ◽  
Wenjie Liao ◽  
Wei Huang ◽  
Yongjia Xu ◽  
Xingyu Chen

An efficient vibration control can reduce negative effects induced by environmental vibrations and thereby improve the performance of precision instruments and the qualities of manufacture. The performance of the widely used linear quadratic regulator control algorithm, a classical active control methodology, depends on the parameters of the control algorithm. Consequently, a set of fixed parameters cannot satisfy the demand for controlling various types of environmental vibrations. Therefore, this study proposes a vibration identification method based on a convolutional neural network. This method helps to optimize the linear quadratic regulator algorithm by selecting corresponding optimal parameters according to the identification results, thereby achieving the objective of optimal control subjected to various types of vibration inputs. Specifically, environmental vibration signals are collected, and the preliminary features of the vibrations (i.e. wavelet coefficient matrices or images) are adopted as input samples for the convolutional neural network. A genetic algorithm is used to optimize the parameters of the linear quadratic regulator algorithm for each type of vibration; subsequently, the trained convolutional neural network model with the best performance is used to identify the vibration and select the corresponding optimal parameters of the linear quadratic regulator algorithm under different types of vibration inputs. Case studies show that the performance of the improved linear quadratic regulator control method is significantly better than that of the conventional linear quadratic regulator algorithm with fixed parameters.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4924 ◽  
Author(s):  
Antonio José Calderón ◽  
Francisco José Vivas ◽  
Francisca Segura ◽  
José Manuel Andújar

This paper proposes a multi-objective model predictive control (MPC) designed for the power management of a multi-stack fuel cell (FC) system integrated into a renewable sources-based microgrid. The main advantage of MPC is the fact that it allows the current timeslot to be optimized while taking future timeslots into account. The multi-objective function solves the problem related to the power dispatch at time that includes criteria to reduce the multi-stack FC degradation, operating and maintenance costs, as well as hydrogen consumption. Regarding the scientific literature, the novelty of this paper lies in the proposal of a generalized MPC controller for a multi-stack FC that can be used independently of the number of stacks that make it up. Although all the stacks that make up the modular FC system are identical, their levels of degradation, in general, will not be. Thus, over time, each stack can present a different behavior. Therefore, the power control strategy cannot be based on an equal distribution according to the nominal power of each stack. On the contrary, the control algorithm should take advantage of the characteristics of the multi-stack FC concept, distributing operation across all the stacks regarding their capacity to produce power/energy, and optimizing the overall performance.


Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 394-399 ◽  
Author(s):  
Zhang Ke ◽  
He Zhenqi ◽  
Lv Meibo

AbstractDue to the influence of various perturbations of space, satellites flying in formation cannot maintain specific configurations for long durations [1, 2]. In order to ensure that formation configurations are able to meet the requirements of space missions, it is important to maintain control of formation configurations. This is an urgent problem to be solved. The traditional control method for controlling formations is based on the average orbit element, and uses the assumption that the average orbit element deviation and the instantaneous orbit element deviation are approximately equal. However, the continuous control system is more difficult to achieve in engineering practice. Using a LQR (linear quadratic regulator) optimal control algorithm and SDRE (state-dependent Riccati equation) optimal control algorithm to maintain the formation flying [3, 4]. Through simulation, it was found that when using the SDRE controller in the system transition process time is shorter than when the LQR controller is used, and fuel consumption is less for the SDRE controller than for the LQR controller.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4245
Author(s):  
Keke Geng ◽  
Nikolai Alexandrovich Chulin ◽  
Ziwei Wang

The fault detection and isolation are very important for the driving safety of autonomous vehicles. At present, scholars have conducted extensive research on model-based fault detection and isolation algorithms in vehicle systems, but few of them have been applied for path tracking control. This paper determines the conditions for model establishment of a single-track 3-DOF vehicle dynamics model and then performs Taylor expansion for modeling linearization. On the basis of that, a novel fault-tolerant model predictive control algorithm (FTMPC) is proposed for robust path tracking control of autonomous vehicle. First, the linear time-varying model predictive control algorithm for lateral motion control of vehicle is designed by constructing the objective function and considering the front wheel declination and dynamic constraint of tire cornering. Then, the motion state information obtained by multi-sensory perception systems of vision, GPS, and LIDAR is fused by using an improved weighted fusion algorithm based on the output error variance. A novel fault signal detection algorithm based on Kalman filtering and Chi-square detector is also designed in our work. The output of the fault signal detector is a fault detection matrix. Finally, the fault signals are isolated by multiplication of signal matrix, fault detection matrix, and weight matrix in the process of data fusion. The effectiveness of the proposed method is validated with simulation experiment of lane changing path tracking control. The comparative analysis of simulation results shows that the proposed method can achieve the expected fault-tolerant performance and much better path tracking control performance in case of sensor failure.


2018 ◽  
Vol 232 ◽  
pp. 04040
Author(s):  
Xiaoling Chen ◽  
Haihua Li

Aiming at the problems of large starting current and unsmooth starting of asynchronous motor, an electromagnetic voltage-regulated soft start control method based on predictive control is proposed. The model of motor soft starter based on predictive control algorithm is established. The control principle of predictive control algorithm is analyzed. The CARIMA model is used to adjust the parameters of motor starting process. With the help of MATLAB, the motor direct start model, the electromagnetic control soft starter model based on PID control algorithm and predictive control algorithm are simulated. The results show that the starting current waveform of the electromagnetic voltage regulator soft starter based on the predictive control algorithm is relatively flat, and the control algorithm can achieve a smooth start of the motor.


Sign in / Sign up

Export Citation Format

Share Document