scholarly journals Decentralized Control Method of ISOP Converter for Input Voltage Sharing and Output Current Sharing in Current Control Loop

Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1114
Author(s):  
Sung-Hun Kim ◽  
Bum-Jun Kim ◽  
Jung-Min Park ◽  
Chung-Yuen Won

Input-Series-Output-Parallel (ISOP) converters, a kind of modular converter, are used in high-input voltage and high-output current applications. In ISOP converters, Input Voltage Sharing (IVS) and Output Current Sharing (OCS) should be implemented for stable operation. In order to solve this problem, this paper proposes a decentralized control method. In the proposed control, output current reference is changed according to the decentralized control characteristic in individual current control loops. In this way, the proposed control method is able to implement IVS and OCS without communication. Also, this method can be easily used in current control loops and has high reliability compared to conventional control methods that require communication. In this paper, the operation principle is described to elucidate the proposed control and a small signal model of an ISOP converter is also implemented. Based on the small signal model, IVS stability analysis is performed using pole-zero maps with varying coefficients and control gains. In addition, the current control loop is designed in a stable region. In order to demonstrate the proposed control method, a prototype ISOP converter is configured using full-bridge converters. The performance of IVS and OCS in an ISOP converter is verified by experimental result.

Author(s):  
Ahmed H. Okilly ◽  
Jeihoon Baek

This paper presents an optimal design for the inner current control loop of the continuous current conduction mode (CCM) power factor correction (PFC) stage, which it can be used as the front stage of the two stages alternating current-direct current (AC-DC) telecom power supply. Conventional single-phase CCM-PFC boost converter usually implemented with using of the proportional-integral (PI) controllers in both of the voltage and current control loops, to regulate the output DC voltage to the specified value, moreover to maintains the input current follows the input voltage which offers converter with high power factor (P.F) and low current total harmonic distortion (THD). However, due to the slow dynamic response of the PI controller at the zero-crossing point of the input supply current, input current can’t fully follow the input voltage which leads to high THD. Digitally controlled PFC converter with an optimal design of the inner current control loop using doubly control loops IP controller to reduce the THD and to offer input current with unity P.F was performed in this paper. Furthermore, for the economic design of the digitally control PFC converter, two isolated AC and DC voltage sensors are proposed and designed for the interfacing with the microcontroller unit (MCU). PSIM software was used to test the converter performance with using the proposed designed current controllers and isolated voltage sensors. High power density digitally controlled telecom PFC stage with P.F of about 99.93%, full load efficiency of about 98.70% and THD less 5.50% is achieved in this work.


2012 ◽  
Vol 229-231 ◽  
pp. 2213-2216
Author(s):  
Bing Han ◽  
Ning Dong ◽  
Amir Mahmood Soomro

This paper presents a digital control strategy for Input-Parallel Output-Parallel (IPOP) DC/DC converters system. The IPOP system is based on two phase-shifted full-bridge (PS-FB) converters whose output current is not equally shared due to parameter differences of each module. The control objective is to obtain output current equally sharing. Small signal model is built to analyze the system stability. Effectiveness of the control strategy is verified by simulation and experiment results.


2013 ◽  
Vol 392 ◽  
pp. 676-681
Author(s):  
Lin Bo Wang ◽  
Hong Kun He ◽  
Lei Shi ◽  
Jin Jin Yang ◽  
Qian Ni Feng

This paper proposes a new digital constant-current control method for high-power LED drive based on buck-boost topology. In this control system, buck-boost topology is used as the power conversion. The output voltage can be either higher or lower than the input voltage in buck-boost topology. Therefore, it solves the problem that in the buck topology the input voltage is required to be always higher than the output voltage. Furthermore, according to the input and output parameters, the duty cycle data which are used to maintain output current constant can be calculated in advance, and stored in the embedded chip. Thus, it can reduce the calculation of the embedded chip and solves the problem that the existing digital constant-current controllers need the high-speed analog-to-digital converter. In addition, in order to reduce the error generated in above calculation, the double threshold feedback circuit is used to fine-tune the duty cycle and makes the output current more steady and accurate. Meanwhile, due to adopting full-digital control, the brightness and flicker frequency of load LED can be conveniently regulated by modifying the system firmware. Therefore, this method can apply to the device of illumination, lighting decoration, visible light communication and so on.


2021 ◽  
Vol 11 (2) ◽  
pp. 539
Author(s):  
Ahmed H. Okilly ◽  
Hojin Jeong ◽  
Jeihoon Baek

This paper presents an optimal design for the inner current-control loop of the continuous current conduction mode (CCM) power factor correction (PFC) stage, which can be used as the front stage of the two-stage AC/DC telecom power supply. The conventional single-phase CCM-PFC boost converter is implemented with proportional–integral (PI) controllers in both the voltage and current-control loops to regulate the output DC voltage to the specified value and to ensure the input current follows the input voltage, which offers a converter with a high-power factor (PF) and low current total harmonic distortion (THD). However, due to the slow dynamic response of the PI controller at the zero-crossing point of the input supply current, the input current cannot fully follow the input voltage, which leads to high THD. In this paper, we investigate a digitally controlled PFC converter with an optimally designed inner current-control loop using a doubly-fed control loops integral-proportional (IP) controller to reduce the THD and to offer an input current with a unity PF. For the economic design of a digitally controlled PFC converter, two isolated AC and DC voltage sensors are designed for interfacing with the microcontroller unit (MCU). PSIM software as well as experimental prototype was used to test the converter performance using the proposed designed current controllers and isolated voltage sensors. We achieved a high-power-density, digitally controlled, telecom PFC stage with a power factor more than 99% and THD of about 5.50%.


2021 ◽  
Vol 11 (13) ◽  
pp. 6230
Author(s):  
Toni Varga ◽  
Tin Benšić ◽  
Vedrana Jerković Štil ◽  
Marinko Barukčić

A speed tracking control method for induction machine is shown in this paper. The method consists of outer speed control loop and inner current control loop. Model predictive current control method without the need for calculation of the weighing factors is utilized for the inner control loop, which generates a continuous set of voltage reference values that can be modulated and applied by the inverter to the induction machine. Interesting parallels are drawn between the developed method and state feedback principles that helped with the analysis of the stability and controllability. Simple speed and rotor flux estimator is implemented that helps achieve sensorless control. Simulation is conducted and the method shows great performance for speed tracking in a steady state, and during transients as well. Additionally, compared to the finite control set predictive current control, it shows less harmonic content in the generated torque on the rotor shaft.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4241 ◽  
Author(s):  
Diana Lopez-Caiza ◽  
Freddy Flores-Bahamonde ◽  
Samir Kouro ◽  
Victor Santana ◽  
Nicolás Müller ◽  
...  

Single-stage voltage step-up inverters, such as the Dual Boost Inverter (DBI), have a large operating range imposed by the high step-up voltage ratio, which together with the converter of non-linearities, makes them a challenge to control. This is particularly the case for grid-connected applications, where several cascaded and independent control loops are necessary for each converter of the DBI. This paper presents a global current control method based on a combination of a linear proportional resonant controller and a non-linear sliding mode controller that simplifies the controller design and implementation. The proposed control method is validated using a grid-connected laboratory prototype. Experimental results show the correct performance of the controller and compliance with power quality standards.


2021 ◽  
Vol 68 (2) ◽  
pp. 1166-1177 ◽  
Author(s):  
Fei Liu ◽  
Guangjun Zhou ◽  
Xinbo Ruan ◽  
Shunyang Ji ◽  
Qingliang Zhao ◽  
...  

2015 ◽  
Vol 741 ◽  
pp. 619-622
Author(s):  
Cho Lung Ryang ◽  
Da Ling Wang

This paper presents a novel closed current control loop of permanent magnet synchronous motor (PMSM). Conventional current control loops need two PI controllers per one PMSM. The paper provides a method for reduction of the resource consumption by using one PI controller for two PMSM. Combining with Black Box Blockset written by Verilog HDL based on Xilinx System Generator, one effective PI controller is designed instead of four PI controllers and simulated using Simulink. The utilization of FPGA resources is verified by Xilinx ISE 14.7 tool. The results show that the proposed method can reduce resource consumption and do not influence system performances observably.


Sign in / Sign up

Export Citation Format

Share Document