scholarly journals European Cities in the Energy Transition: A Preliminary Analysis of 27 Cities

Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1315 ◽  
Author(s):  
Estitxu Villamor ◽  
Ortzi Akizu-Gardoki ◽  
Olatz Azurza ◽  
Leire Urkidi ◽  
Alvaro Campos-Celador ◽  
...  

Nowadays, there is a wide scientific consensus about the unsustainability of the current energy system and at the same time, social awareness about climate change and the IPCC’s goals is increasing in Europe. Amongst the different pathways towards them, one alternative is the radical transition to a democratic low-carbon energy system where the local scale has a key leading role. Under this scope, this research is framed within the mPOWER project, financed by the European Commission’s H2020 programme, which promotes collaboration among different European municipalities in order to boost the transition to a renewable-based participatory energy system. This paper presents the starting point of the mPOWER project, where the main energy features of 27 selected European municipalities are collected and analysed for the year 2016. An open public tender and selection process was carried out among European cities in order to choose the candidates to participate in mPOWER project. A view of this situation will be taken by the mPOWER project as a diagnostic baseline for the following steps: a peer-to-peer knowledge-sharing process among these European municipalities, and subsequently, among a more extensive group. The first finding of the paper is that, even if those municipalities are trying to reduce their greenhouse gas emissions, they are highly dependent on fossil fuels, even in cases where renewable energies have significant presence. Second, their energy consumption is logarithmically related to the human development index and gross domestic product but not to the size of the cities and their climate characteristics. Finally, despite the work that these cities are making towards energy transition in general and within the mPOWER project in particular, the paper shows a high difficulty mapping their energy systems. The lack of accurate and unified data by the municipalities is a sign of disempowerment at a local and public level in the energy sphere and makes difficult any strategy to advance towards a bottom-up energy transition. Among other goals, the mPOWER project aims to reveal these kinds of difficulties and help local authorities in managing their transition paths.

2021 ◽  
Author(s):  
Osamah Alsayegh

Abstract This paper examines the energy transition consequences on the oil and gas energy system chain as it propagates from net importing through the transit to the net exporting countries (or regions). The fundamental energy system security concerns of importing, transit, and exporting regions are analyzed under the low carbon energy transition dynamics. The analysis is evidence-based on diversification of energy sources, energy supply and demand evolution, and energy demand management development. The analysis results imply that the energy system is going through technological and logistical reallocation of primary energy. The manifestation of such reallocation includes an increase in electrification, the rise of energy carrier options, and clean technologies. Under healthy and normal global economic growth, the reallocation mentioned above would have a mild effect on curbing the oil and gas primary energy demands growth. A case study concerning electric vehicles, which is part of the energy transition aspect, is presented to assess its impact on the energy system, precisely on the fossil fuel demand. Results show that electric vehicles are indirectly fueled, mainly from fossil-fired power stations through electric grids. Moreover, oil byproducts use in the electric vehicle industry confirms the reallocation of the energy system components' roles. The paper's contribution to the literature is the portrayal of the energy system security state under the low carbon energy transition. The significance of this representation is to shed light on the concerns of the net exporting, transit, and net importing regions under such evolution. Subsequently, it facilitates the development of measures toward mitigating world tensions and conflicts, enhancing the global socio-economic wellbeing, and preventing corruption.


2021 ◽  
Author(s):  
Henry Lee ◽  
Daniel P. Schrag ◽  
Matthew Bunn ◽  
Michael Davidson ◽  
Wei Peng ◽  
...  

Climate change is a key problem of the 21st century. China, as the largest emitter of greenhouse gases, has committed to stabilize its current emissions and dramatically increase the share of electricity production from non-fossil fuels by 2030. However, this is only a first step: in the longer term, China needs to aggressively strive to reach a goal of zero-emissions. Through detailed discussions of electricity pricing, electric vehicle policies, nuclear energy policies, and renewable energy policies, this book reviews how near-term climate and energy policies can affect long-term decarbonization pathways beyond 2030, building the foundations for decarbonization in advance of its realization. Focusing primarily on the electricity sector in China - the main battleground for decarbonization over the next century – it provides a valuable resource for researchers and policymakers, as well as energy and climate experts.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 163 ◽  
Author(s):  
Julián Puszkiel ◽  
Aurelien Gasnier ◽  
Guillermina Amica ◽  
Fabiana Gennari

Hydrogen technology has become essential to fulfill our mobile and stationary energy needs in a global low–carbon energy system. The non-renewability of fossil fuels and the increasing environmental problems caused by our fossil fuel–running economy have led to our efforts towards the application of hydrogen as an energy vector. However, the development of volumetric and gravimetric efficient hydrogen storage media is still to be addressed. LiBH4 is one of the most interesting media to store hydrogen as a compound due to its large gravimetric (18.5 wt.%) and volumetric (121 kgH2/m3) hydrogen densities. In this review, we focus on some of the main explored approaches to tune the thermodynamics and kinetics of LiBH4: (I) LiBH4 + MgH2 destabilized system, (II) metal and metal hydride added LiBH4, (III) destabilization of LiBH4 by rare-earth metal hydrides, and (IV) the nanoconfinement of LiBH4 and destabilized LiBH4 hydride systems. Thorough discussions about the reaction pathways, destabilizing and catalytic effects of metals and metal hydrides, novel synthesis processes of rare earth destabilizing agents, and all the essential aspects of nanoconfinement are led.


2011 ◽  
Vol 361-363 ◽  
pp. 1832-1836
Author(s):  
Chang Hong Zhao ◽  
Yan Xu ◽  
Jia Hai Yuan

This paper studies the low carbon transition of electricity system in China. The paper describes the approach, which builds on transitions and transition management using a multi-level perspective (MLP) of niches, socio-technical regime and landscape. A MLP analysis on China’s power sector is presented to understand the current landscape, regime and niches. Five transition pathways with their possible technology options are presented. The paper goes further to propose an interactive management framework for low carbon energy system transition in China and reprehensive technology options are appraised to indicate the policy package design logic in the framework. The work in the paper will be useful in informing policy-makers and other stakeholders and may provide reference value for other countries for energy transition management.


Author(s):  
Kathleen Araújo

This chapter outlines the design of the current study. It discusses my underlying logic for scoping energy system change with theory-building in the form of (1) a framework on intervention that operationalizes insights from the previous chapter and (2) conceptual models of structural readiness. A brief review then follows of related, global developments to provide broader context for the cases. The chapter concludes with a preview of the transitions that will be discussed in depth in subsequent chapters. This book draws on my research of four national energy system transitions covering the period since 1970. I selected a timeframe that reflected a common context of international events which preceded as well as followed the oil shocks of 1973 and 1979. Such framing allowed me to trace policy and technology learning over multiple decades for different cases. I completed field work for this project primarily between 2010 and 2012, with updates continuing through to the time this book went to press. I selected cases from more than 100 countries in the International Energy Agency (IEA) databases. The ones that I chose represented countries which demonstrated an increase of 100% or more in domestic production of a specific, low carbon energy and the displacement of at least 15 percentage points in the energy mix by this same, low carbon energy relative to traditional fuels for the country and sector of relevance. I utilized adoption and displacement metrics to consider both absolute and relative changes. Final cases reflect a diversity of energy types and, to some extent, differences in the socio-economic and geographic attributes of the countries. The technologies represent some of the more economically-competitive substitutes for fossil fuels. It’s important to emphasize that the number of cases was neither exhaustive nor fully representative. Instead, the cases reflect an illustrative group of newer, low carbon energy technologies for in depth evaluation. Each of the cases shares certain, basic similarities. These include a national energy system comprised of actors, inputs, and outputs with systemic architecture connecting the constituent parts in a complex network of energy-centered flows over time—including extraction, production, sale, delivery, regulation, and consumption.


2019 ◽  
Vol 11 (7) ◽  
pp. 1847 ◽  
Author(s):  
Rebecka Engström ◽  
Georgia Destouni ◽  
Mark Howells ◽  
Vivek Ramaswamy ◽  
Holger Rogner ◽  
...  

This paper analyses how local energy and climate actions can affect the use of water and land resources locally, nationally and globally. Each of these resource systems is linked to different Sustainable Development Goals (SDGs); we also explore related SDG interactions. A municipality in Sweden with the ambition of phasing out fossil fuels by year 2030 is used as illustrative case example. The local energy system is modelled in detail and indirect water and land requirements are quantified for three stylised decarbonisation scenarios of pathways to meeting climate and energy requirements (related to SDG13 and SDG7, respectively). Total local, national and global implications are addressed for the use of water and land resources, which relate to SDG6 for water, and SDG2 and SDG15 for land use. We find that the magnitude and location of water and land impacts are largely pathway-dependent. Some scenarios of low carbon energy may impede progress on SDG15, while others may compromise SDG6. Data for the studied resource uses are incoherently reported and have important gaps. As a consequence, the study results are indicative and subject to uncertainty. Still, they highlight the need to recognise that resource use changes targeting one SDG in one locality have local and non-local impacts that may compromise progress other SDGs locally and/or elsewhere in the world.


2019 ◽  
Vol 11 (20) ◽  
pp. 5558
Author(s):  
Erik Laes ◽  
Pieter Valkering ◽  
Yves De Weerdt

Industrialised economies are currently confronted with the challenge of transitioning to a low-carbon energy system. Starting from the insight that ‘system innovation’ rather than incremental change is needed, we diagnose barriers and enablers for energy system transformation for the case of Flanders (Belgium). We thereby combine multiple perspectives: a techno-economic perspective to derive a technology-based vision on the energy transition, a technology innovation perspective to assess barriers and enablers regarding the upscaling of technological niche-innovations, and a system innovation perspective to address fundamental barriers and enablers associated with transformative system change. We highlight the complementary features of the three perspectives and describe how insights can feed into the development of energy transition pathways.


2021 ◽  
Vol 167 (1-2) ◽  
Author(s):  
Friedemann Polzin ◽  
Mark Sanders ◽  
Bjarne Steffen ◽  
Florian Egli ◽  
Tobias S. Schmidt ◽  
...  

AbstractCost of capital is an important driver of investment decisions, including the large investments needed to execute the low-carbon energy transition. Most models, however, abstract from country or technology differences in cost of capital and use uniform assumptions. These might lead to biased results regarding the transition of certain countries towards renewables in the power mix and potentially to a sub-optimal use of public resources. In this paper, we differentiate the cost of capital per country and technology for European Union (EU) countries to more accurately reflect real-world market conditions. Using empirical data from the EU, we find significant differences in the cost of capital across countries and energy technologies. Implementing these differentiated costs of capital in an energy model, we show large implications for the technology mix, deployment, carbon emissions and electricity system costs. Cost-reducing effects stemming from financing experience are observed in all EU countries and their impact is larger in the presence of high carbon prices. In sum, we contribute to the development of energy system models with a method to differentiate the cost of capital for incumbent fossil fuel technologies as well as novel renewable technologies. The increasingly accurate projections of such models can help policymakers engineer a more effective and efficient energy transition.


Author(s):  
Paul Taylor

“Accelerating the Transition to a 100% Renewable Energy Era” is part of the series Lecture Notes in Energy that contains 24 papers from multiple authors. The notes provide a topical and comprehensive source of information on achieving the transition to a low-carbon energy system, which is essential in the fight against climate change as we transition from our use of fossil fuels to clean energy.The book provides in-depth analysis of the various solutions that will contribute to this change, such as hydrogen fuel, low carbon buildings and cities, security of supply, energy grids and energy storage. The collection of papers provides the necessary data, case studies and analysis to frame the topic and explore the challenges and potential solutions.


2020 ◽  
Author(s):  
Lianbiao Cui ◽  
Xiaobing Zhang ◽  
Hongbo Duan ◽  
Lei Zhu

Abstract The coronavirus pandemic greatly shocked the global energy market, which could be clearly demonstrated by the recent collapse in crude oil prices. Using a dynamic multi-regional computable general equilibrium model, we explored the influences of the COVID-19 pandemic on energy production and consumption. The associated impacts on the macroeconomy as well as on carbon emissions are also examined. The results of this paper indicate dramatic negative shocks of the COVID-19 pandemic to energy consumption at both global and national levels, particularly for oil and oil products. However, the energy transition to renewables will be paused, as other non-oil fossil fuels can still play significant roles in economic activity. The epidemic may also temporarily terminate the more than ten-year increasing trend of the world’s total CO2 emissions, despite its limited contribution to the mitigation of global warming. However, there are still many opportunities worthy of use to promote short- or mid-term low-carbon energy transitions.


Sign in / Sign up

Export Citation Format

Share Document