scholarly journals Electrochemically Reduced Titania Nanotube Synthesized from Glycerol-Based Electrolyte as Supercapacitor Electrode

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2767 ◽  
Author(s):  
Muhammad Muhammad Muzakir ◽  
Zulkarnain Zainal ◽  
Hong Ngee Lim ◽  
Abdul Halim Abdullah ◽  
Noor Nazihah Bahrudin ◽  
...  

In this paper the synthesis of self-organized Titania nanotubes (TNTs) by a facile potentiostatic anodization in a glycerol-based electrolyte is reported. The optimized TNTs were subsequently reduced through a cathodic reduction process to enhance its capacitive performance. FESEM and XRD were used to characterize the morphology and crystal structure of the synthesized samples. XPS analysis confirmed the reduction of Ti4+ to Ti3+ ions in the reduced Titania nanotubes (R-TNTs). The tube diameter and separation between the tubes were greatly influenced by the applied voltage. TNTs synthesized at voltage of 30 V for 60 min exhibited 86 nm and 1.1 µm of tube diameter and length, respectively and showed high specific capacitance of 0.33 mF cm−2 at current density of 0.02 mA cm−2. After reduction at 5 V for 30 s, the specific capacitance increased by about seven times (2.28 mF cm−2) at 0.5 mA cm−2 and recorded about 86% capacitance retention after 1000 continuous cycling at 0.2 mA cm−2, as compared to TNTs, retained about 61% at 0.01 mA cm−2. The charge transfer resistance drastically reduced from 6.2 Ω for TNTs to 0.55 Ω for R-TNTs, indicating an improvement in the transfer of electrons and ions across the electrode–electrolyte interface.

2011 ◽  
Vol 306-307 ◽  
pp. 134-138 ◽  
Author(s):  
Wei Dong Yin ◽  
Gui Lian Li ◽  
Xian Ming Liu

NiO/Ni nanocomposites were prepared by chemically reduction-oxidation process in tetra-ethylene glycol (TEG) solution. The structure and morphology of the samples were examined by XRD and SEM. The results indicated the composite consisted of NiO and Ni and exhibited spherical morphology with diameter of 50-200 nm. The electrochemical performances of composite electrodes used in electrochemical capacitors were studied. The electrochemical measurements were carried out using cyclic voltammetry, galvanostatic charge/discharge and impedance spectroscopy in 6M KOH aqueous electrolyte using three-electrode Swagelok systems. The results showed that the composite had a high specific capacitance and excellent capacitive behavior. The specific capacitance of the composite decreased to 192F/g after 500 cycles. Due to the existance of Ni, the charge transfer resistance is lower than 1Ω. It revealed that the composite exhibited good cycling performance.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1308 ◽  
Author(s):  
Anil Yedluri ◽  
Eswar Araveeti ◽  
Hee-Je Kim

NiCo2O4 nanoleaf arrays (NCO NLAs) and NiCo2O4/NiCO2O4 nanofile arrays (NCO/NCO NFAs) material was fabricated on flexible nickel foam (NF) using a facile hydrothermal approach. The electrochemical performance, including the specific capacitance, charge/discharge cycles, and lifecycle of the material after the hydrothermal treatment, was assessed. The morphological and structural behaviors of the NF@NCO NLAs and NF@NCO/NCO NFAs electrodes were analyzed using a range of analysis techniques. The as-obtained nanocomposite of the NF@NCO/NCO NFAs material delivered outstanding electrochemical performance, including an ultrahigh specific capacitance (Cs) of 2312 F g−1 at a current density of 2 mA cm−2, along with excellent cycling stability (98.7% capacitance retention after 5000 cycles at 5 mA cm−2). These values were higher than those of NF@NCO NLAs (Cs of 1950 F g−1 and 96.3% retention). The enhanced specific capacitance was attributed to the large electrochemical surface area, which allows for higher electrical conductivity and rapid transport between the electrons and ions as well as a much lower charge-transfer resistance and superior rate capability. These results clearly show that a combination of two types of binary metal oxides could be favorable for improving electrochemical performance and is expected to play a major role in the future development of nanofile-like composites (NF@NCO/NCO NFAs) for supercapacitor applications.


2018 ◽  
Vol 96 (5) ◽  
pp. 477-483 ◽  
Author(s):  
Saeid Panahi ◽  
Moosa Es’haghi

In this work, PANI/MnCo2O4 nanocomposite was prepared via in-situ chemical polymerization method. Materials synthesized were characterized by FTIR spectroscopy, X-ray diffraction, and scanning electron spectroscopy. In addition, surface characterization of samples such as specific surface area, pore volume, and pore size distribution was studied. Supercapacitor capability of materials was investigated in 1 mol L–1 Na2SO4 solution using cyclic voltammetry in different potential scan rates and electrochemical impedance spectroscopy (EIS). The specific capacitance of materials was calculated, and it was observed that the specific capacitance of PANI/MnCo2O4 nanocomposite was 185 F g−1, much larger than PANI. Moreover, the prepared nanocomposite exhibited better rate capability in scan rate of 100 mV s−1 with respect to PANI. The EIS experiments revealed that the nanocomposite has lower charge transfer resistance compared with pure PANI. Subsequently, it was shown that the nanocomposite cycling performance was superior to the PANI cycling performance.


2017 ◽  
Vol 10 (05) ◽  
pp. 1750057 ◽  
Author(s):  
Xiaolan Song ◽  
Hailong Duan ◽  
Ying Zhang ◽  
Haibo Wang ◽  
Hongyun Cao

In this study, composite [Formula: see text]-MnO2/activated carbon (AC) was prepared by chemical deposition method, and then it was assembled into electrode and electrochemical capacitor. Effects of reaction temperature and MnO2 content were studied. Materials were characterized by X-ray diffraction, scanning electron microscope and electrochemical test. MnO2 prepared at 30[Formula: see text]C was amorphous, and it displayed the high specific capacitance as nearly four times as MnO2 at 80[Formula: see text]C. Due to MnO2 particles which would block carbon pores when its content was too high, the composite containing 30% of MnO2 exhibited the largest specific capacitance of 278.3[Formula: see text]F/g at 0.2[Formula: see text]A/g in K2SO4 electrolyte. The equivalent series resistance and charge transfer resistance of material were only 1.35[Formula: see text][Formula: see text] and 1.41[Formula: see text][Formula: see text], respectively. After 1000 cycles, the capacitance retention was still 91.6%. It indicated that chemical deposition was a facile, low cost and effective method to prepare MnO2/AC with good electrochemical performances.


2016 ◽  
Vol 42 (4) ◽  
pp. 5195-5202 ◽  
Author(s):  
Hongtao Guan ◽  
Wenhui Dang ◽  
Gang Chen ◽  
Chengjun Dong ◽  
Yude Wang

2018 ◽  
Vol 281 ◽  
pp. 854-858
Author(s):  
Xi Cheng Gao ◽  
Jian Qiang Bi ◽  
Wei Li Wang ◽  
Guo Xun Sun ◽  
Xu Xia Hao ◽  
...  

NiFe2O4 powders were synthesized by a facile hydrothermal method at 180°C followed by a thermal treatment at 300°C. The phase composition and morphology were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results showed that the NiFe2O4 powders were well-crystallized, and they possessed a particle size in the range of 50-100 nm. The electrochemical property was characterized via cyclic voltammetry (CV) and constant current charge-discharge method. Encouragingly, the NiFe2O4 powders had an excellent electrochemical property, whose specific capacitance reached 266.84 F/g at the electric current density of 1 A/g due to the small particle size. Compared with other Fe-based metal compound oxides, NiFe2O4 has a better electrochemical performance, which can be widely used in the supercapacitor electrode materials.


2017 ◽  
Vol 20 (4) ◽  
pp. 197-204
Author(s):  
Weiliang Chen ◽  
Shuhua Pang ◽  
Zheng Liu ◽  
Zhewei Yang ◽  
Xin Fan ◽  
...  

Polypyrrole with hierarchical dendritic structures assembled with cauliflower-like structure of nanospheres, was synthesized by chemical oxidation polymerization. The structure of polyryrrole was characterized by Fourier transform infrared spectrometer and scanning electron microscopy. The electrochemical performance was performed on CHI660 electrochemical workstation. The results show that oxalic acid has a significant effect on morphology of PPy products. The hierarchical dendritic PPyOA(3) electrodes possess a large specific capacitance as high as 744 F/g at a current density of 0.2 A/g and could achieve a higher specific capacitance of 362 F/g even at a current density of 5.0 A/g. Moreover, the dendritic PPy products produce a large surface area on the electrode through the formation of the channel structure with their assembled cauliflower-like morphology, which facilitates the charge/electron transfer relative to the spherical PPy electrode. The spherical dendritic PPyOA(3) electrode has 58% retention of initial specific capacitance after 260 cycles. The as-prepared dendritic polypyrrole with high performance is a promsing electrode material for supercapacitor.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Shuang Xi ◽  
Yinlong Zhu ◽  
Yutu Yang ◽  
Ying Liu

MnO2 nanorod/carbon cloth (MnO2/CC) composites were prepared through in situ redox deposition as freestanding electrodes for flexible supercapacitors. The CC substrates possessing porous and interconnecting structures enable the uniform decoration of MnO2 nanorods on each fiber, thus forming conformal coaxial micro/nanocomposites. Three-dimensional CC can provide considerable specific surface area for high mass loading of MnO2, and the direct deposition process without using polymeric binders enables reliable electrical connection of MnO2 with CC. The effect of MnO2 decoration on the electrochemical performances was further investigated, indicating that the electrode prepared with 40 min deposition time shows high specific capacitance (220 F/g at a scan rate of 5 mV/s) and good cycling property (90% of the initial specific capacitance was maintained after 2500 cycles) in 1 M Na2SO4 aqueous solution. This enhanced electrochemical performance is ascribed to the synergistic effect of good conductivity of carbon substrates as well as outstanding pseudocapacitance of MnO2 nanorods. The obtained MnO2/CC compositing electrode with the advantages of low cost and easy fabrication is promising in applications of flexible supercapacitors.


2015 ◽  
Vol 1109 ◽  
pp. 448-450 ◽  
Author(s):  
Md. Rakibul Hasan ◽  
Sharifah Bee binti O. A. Abdul Hamid ◽  
Wan Jeffrey Basirun

Copper doped graphene-TiO2 nanocomposite were prepared via sol-gel process and embedded onto ITO coated glass films using electrophoretic deposition technique. The catalyst films were used for photoelectrocatalysis (PEC) of CO2 induced under simulated solar irradiation. Triethanolamine (TEA) aqueous solution was used as an electrolyte in this experiment. CO2 capture in the electrolyte solution plays vital role in the PEC process and in this case, the effect of TEA was investigated. Although the absorption rate of CO2 is lower in TEA solution than primary or secondary amines, CO2 loading was found higher in the solution. Less reactivity of TEA towards CO2 was also observed. The impedance results showed that, increased concentration of TEA in aqueous solution helps to reduce charge transfer resistance and thus facilitates CO2 reduction process.


2017 ◽  
Vol 893 ◽  
pp. 127-131 ◽  
Author(s):  
Min Ji Kim ◽  
Chang Hee Lee ◽  
Mun Hui Jo ◽  
Soon Ki Jeong

To clarify the electrochemical decomposition of poly (vinylidene fluoride) (PVdF) used as a binder for lithium-ion batteries while simultaneously verifying the correlation between electrode resistance and the PVdF content in graphite negative electrodes, in this study, we applied lithium bis (trifluoromethanesulfonyl) imide, which suppresses graphite exfoliation, as a salt. As a result, the electrochemical decomposition of PVdF was observed at a higher potential than that at which the electrolyte was decomposed during the reduction process. Additionally, this study demonstrated (through electrochemical impedance spectroscopy analysis) that electrode resistances such as solid electrolyte interface and charge transfer resistance proportionally increased with the PVdF content.


Sign in / Sign up

Export Citation Format

Share Document