scholarly journals Building-Integrated Photovoltaics (BIPV) in Historical Buildings: Opportunities and Constraints

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3628
Author(s):  
Flavio Rosa

In this work, we investigate the potential of using last generation photovoltaic systems in traditional building components of historical buildings. The multifunctional photovoltaic components also open new application and implementation horizons in the field of energy retrofitting in historical buildings. Some of the Building-Integrated Photovoltaics (BIPV) solutions lend themselves optimally to solving the problems of energy efficiency in historical buildings. For the next few years, Italian legislation foresees increasing percentages of energy production from renewable sources, including historical buildings. The opportunities and constraints analysed are presented through a specific approach, typical of building processes for innovative technological BIPV solutions on historical buildings.

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3412
Author(s):  
Reza Khalifeeh ◽  
Hameed Alrashidi ◽  
Nazmi Sellami ◽  
Tapas Mallick ◽  
Walid Issa

Semi-transparent Building Integrated Photovoltaics provide a fresh approach to the renewable energy sector, combining the potential of energy generation with aesthetically pleasing, multi-functional building components. Employing a range of technologies, they can be integrated into the envelope of the building in different ways, for instance, as a key element of the roofing or façade in urban areas. Energy performance, measured by their ability to produce electrical power, at the same time as delivering thermal and optical efficiencies, is not only impacted by the system properties, but also by a variety of climatic and environmental factors. The analytical framework laid out in this paper can be employed to critically analyse the most efficient solution for a specific location; however, it is not always possible to mitigate energy losses, using commercially available materials. For this reason, a brief overview of new concept devices is provided, outlining the way in which they mitigate energy losses and providing innovative solutions for a sustainable energy future.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1011
Author(s):  
Bartłomiej Bajan ◽  
Joanna Łukasiewicz ◽  
Agnieszka Poczta-Wajda ◽  
Walenty Poczta

The projected increase in the world’s population requires an increase in the production of edible energy that would meet the associated increased demand for food. However, food production is strongly dependent on the use of energy, mainly from fossil fuels, the extraction of which requires increasing input due to the depletion of the most easily accessible deposits. According to numerous estimations, the world’s energy production will be dependent on fossil fuels at least to 2050. Therefore, it is vital to increase the energy efficiency of production, including food production. One method to measure energy efficiency is the energy return on investment (EROI), which is the ratio of the amount of energy produced to the amount of energy consumed in the production process. The literature lacks comparable EROI calculations concerning global food production and the existing studies only include crop production. The aim of this study was to calculate the EROI of edible crop and animal production in the long term worldwide and to indicate the relationships resulting from its changes. The research takes into account edible crop and animal production in agriculture and the direct consumption of fossil fuels and electricity. The analysis showed that although the most underdeveloped regions have the highest EROI, the production of edible energy there is usually insufficient to meet the food needs of the population. On the other hand, the lowest EROI was observed in highly developed regions, where production ensures food self-sufficiency. However, the changes that have taken place in Europe since the 1990s indicate an opportunity to simultaneously reduce the direct use of energy in agriculture and increase the production of edible energy, thus improving the EROI.


2014 ◽  
Vol 45 (4) ◽  
pp. 168 ◽  
Author(s):  
Sergio Castellano

During the last years, European government remuneration polices promoted the realisation of photovoltaic systems integrated with the structures instead of on ground photovoltaic (PV) plants. In this context, in rural areas, greenhouses covered with PV modules have been developed. In order to interdict the building of greenhouses with an amount of opaque panels on covering not coherent with the plant production, local laws assigned a threshold value, usually between 25% and 50%, of the projection on the soil of the roof. These ranges seem not to be based on scientific evaluation about the agricultural performances required to the building but only on empirical assessments. Purpose of this paper is to contribute to better understand the effect of different configurations of PV panels on the covering of a monospan duo-pitched roof greenhouse in terms of shading effect and energy efficiency during different periods of the year. At this aim, daylighting and insolation analysis were performed by means of the software Autodesk<sup>®</sup> Ecotect<sup>®</sup> Analysis (Autodesk, Inc., San Rafael, CA, USA) on greenhouse model with different covering ratio of polycrystalline photovoltaic panels on the roof.


2020 ◽  
Vol 5 (10) ◽  
pp. 1260-1262
Author(s):  
Stela Sefa ◽  
Tania Floqi ◽  
Julian Sefa

The wastewater treatment plant serving the city of Durres, which is the second most populous city of Albania, employs the tertiary advanced wastewater treatment method and engages in biogas production to achieve energy efficiency. In order to empirically evaluate the plant’s energy efficiency realization, the total biogas produced and converted to electricity for daily consumption was measured during a three years period (2016 - 2018). The highest electricity produced was recorded in 2016, with a daily average of 844kWh compared to 550kWh and 370kWh in 2017 and 2018, respectively. So that the plant meets proper criteria to classify as an energy-efficient entity, 30.0 percent of its electricity consumption must be derived from biogas. Converted in kWh, the plant should generate 2,975 kWh/day. Based on the biomass and energy values measured during the study period, it is concluded that electricity supplied from biogas met 6.0 percent of the plant’s energy requirements, or one fifth of the energy-efficiency target. While the plant was successful in carrying out the full waste-to-energy production process, the electricity supplied from biogas was very low and did not fulfil the plant’s self-energy requirements.


2020 ◽  
pp. 40-49 ◽  
Author(s):  
Angelika Anduła ◽  
Dariusz Heim

Photovoltaic systems have become a common solution for, both small residential buildings as well as large service buildings. When buildings are being designed, it is important to focus on the aspect of the object’s energy efficiency as lowering the energy consumption of a given facility is crucial. The article discusses the use of photovoltaic panels such as so-called BAPV (Building Applied Photovoltaics) and BIPV (Building Installed Photovoltaics) installations as well as photovoltaic thermal systems (PV/T), which generate both electricity and heat. The role of PV installation in so-called zero energy buildings and proposals for future research and solutions are also discussed.


BUILDER ◽  
2021 ◽  
Vol 284 (3) ◽  
pp. 20-25
Author(s):  
Maciej Stojak

Contemporary ecological buildings have no formal attributes that distinguish them from "standard" architecture. What is more - due to the requirements of the construction law regarding energy efficiency, currently designed buildings almost always are equipped with technologies or elements that could be described as "green" or "health promoting". The aim of the article is to check whether this thesis is indeed true. The subject of the analysis are facades - the element with the greatest impact on the shape of the building. The innovative functions fulfilled by these structures were analysed. The examples - depending on the function performed - were divided into groups: energy production, pollution absorption, thermal energy storage, response to environmental conditions and the use of recycled materials. Relatively common and experimental technologies were considered. One of the tasks of the article is an attempt to determine whether, in relation to the mentioned technologies, it is possible to assess their direct impact on the health of the inhabitants. Final conclusions were drawn on the basis of a comparison of the characteristic parameters and the environmental impact of smart skin façades.


2019 ◽  
Vol 140 ◽  
pp. 09001 ◽  
Author(s):  
Ekaterina Gryznova ◽  
Vadim Davydov ◽  
Yuri Batov ◽  
Valentin Dudkin ◽  
Danila Puz’ko ◽  
...  

The article considers the energy efficiency of energy production from various types of fuel. The analysis of the negative impact of the use of various types of fuel on the environment. The most significant indicators for assessing the environmental efficiency of the use of fuel for electricity production are established. A comparison is made with the performance indicators that are currently used. The advantages and disadvantages are established. The necessity of developing a more effective methodology for assessing environmental performance is substantiated. A new methodology for assessing the environmental efficiency of using various methods for the production of electricity is proposed. Research results are presented.


Sign in / Sign up

Export Citation Format

Share Document