scholarly journals Effects of Diethyl Ether Introduction in Emissions and Performance of a Diesel Engine Fueled with Biodiesel-Ethanol Blends

Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3787 ◽  
Author(s):  
Márcio Carvalho ◽  
Felipe Torres ◽  
Vitor Ferreira ◽  
Júlio Silva ◽  
Jorge Martins ◽  
...  

Biofuels provide high oxygen content for combustion and do modify properties that influence the engine operation process such as viscosity, enthalpy of vaporization, and cetane number. Some requirements of performance, fuel consumption, efficiency, and exhaust emission are necessary for the validation of these biofuels for application in engines. This work studies the effects of the use of diethyl ether (DEE) in biodiesel-ethanol blends in a DI mechanical diesel engine. The blends used in the tests were B80E20 (biodiesel 80%-ethanol 20%) and B76E19DEE5 (biodiesel 76%-ethanol 19%-DEE 5%). Fossil diesel (D100) and biodiesel (B100) were evaluated as reference fuels. The results revealed similar engine efficiencies among tested fuels at all loads. The use of B100 increased CO and NOx and decreased THC compared to D100 at the three loads tested. B80E20 fuel showed an increase in NOx emission in comparison with all fuels tested, which was attributed to higher oxygen content and lower cetane number. THC and CO were also increased for B80E20 compared to B100 and D100. The use of B76E19DEE5 fuel revealed reductions in NOx and CO emissions, while THC emissions increased. The engine efficiency of B76E19DEE5 was also highlighted at intermediate and more elevated engine load conditions.

2014 ◽  
Vol 612 ◽  
pp. 175-180 ◽  
Author(s):  
K.R. Patil ◽  
S.S. Thipse

Diethyl Ether (DEE) is a promising oxygenated renewable bio-base resource fuel for CI engines owing to its high ignition quality. DEE has several favourable properties, including exceptional cetane number, very low self-ignition temperature, high oxygen content, broad flammability limits and reasonable energy density for on-board storage. It is a liquid at ambient conditions, which makes it attractive for fuel handling and fuel infrastructure requirements and hence, it is a compatible fuel for use in CI engine. Diethyl ether is the simplest ether expressed by its chemical formula CH3CH2-O-CH2CH3, consisting of two ethyl groups bonded to a central oxygen atom. It can be mixed in any proportion in diesel fuel as it is completely miscible with diesel fuel. It was observed that density, kinematic viscosity and calorific value of the blends decreases while the oxygen content and cetane number of the blends increases with the concentration of DEE addition. The presence of DEE increases the front end volatility of the blends and decreases boiling point in comparison to baseline diesel fuel. No significant difference was observed in the tail-end volatility of the blends. The blended fuel retains the desirable physical properties of diesel fuel but includes the cleaner burning capability of DEE.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6584
Author(s):  
Laura Aguado-Deblas ◽  
Jesús Hidalgo-Carrillo ◽  
Felipa M. Bautista ◽  
Carlos Luna ◽  
Juan Calero ◽  
...  

The main objective of this work is to contribute to a gradual replacement process of fossil diesel (D) with biofuels composed by diethyl carbonate (DEC) and either sunflower or castor oil, as straight vegetable oils (SVOs). DEC is a very interesting candidate as an oxygenated additive not only because of its low price and renewable nature, but also its favorable fuel properties, such as very low kinematic viscosity, high cetane number, high oxygen content, rich cold flow properties and good miscibility with fossil diesel and vegetable oils. In this work, the more suitable DEC/SVO biofuels are chosen based on kinematic viscosity, according to the European normative. Additionally, the most relevant physical–chemical properties of (bio)fuels such as density, calorific value, cloud point, pour point and cetane number are determined. The influence of DEC on engine performance and exhaust emissions is analyzed by fueling a conventional Diesel engine with the different D/DEC/SVO triple and DEC/SVO double mixtures. The tests results are also compared with commercial diesel. From the results, it is concluded that Diesel engine fueled with the blends studied exhibits an excellent performance in terms of power output, very similar to diesel. Additionally, the use of these blends can remarkably decrease smoke emissions down to 98%, with respect to fossil diesel. The addition of DEC shows a significant improvement in cold flow properties of fuel mixtures in the exchange of a slightly higher brake specific fuel consumption (BSFC) than diesel. Interestingly, the pure biofuels composed by DEC and SVO allow for a suitable engine operation and achieve the lowest emissions, which means these blends can be successfully employed in current engines without adding fossil diesel, i.e., their use entail a 100% renewability.


2014 ◽  
Vol 18 (1) ◽  
pp. 217-228 ◽  
Author(s):  
Panneer John ◽  
Karuppannan Vadivel

In the recent research, as a result of depletion of world petroleum reserves, considerable attention has been focused on the use of different alternative fuels in diesel engines. The present work aims to ensure the possibility of adding ethanol as an additive with animal fat biodiesel that is tested as an alternative fuel for diesel in a CI engine. In this study, biodiesel is obtained from waste pork lard by base-catalyzed transesterification with methanol when potassium hydroxide as catalyst. 2.5%, 5% and 7.5% by volume of ethanol is blended with neat biodiesel in order to improve performance and combustion characteristics of a diesel engine. The experimental work is carried out in a 3.7 kW, single cylinder, naturally aspirated, water cooled, direct injection diesel engine for different loads and at a constant speed of 1500 rpm. The performance, emission and combustion characteristics of biodiesel-ethanol blends are investigated by comparing them with neat biodiesel and standard diesel. The experimental test results showed that the combustion and performance characteristics improved with the increase in percentage of ethanol addition with biodiesel. When compared to neat biodiesel and standard diesel, an increase in brake thermal efficiency of 5.8% and 4.1% is obtained for BEB7.5 blend at full load of the engine. With the increase in percentage of ethanol fraction in the blends, peak cylinder pressure and the corresponding heat release rate are increased. Biodiesel-ethanol blends exhibit longer ignition delay and shorter combustion duration when compared to neat biodiesel. Optimum reduction in carbon monoxide, unburned hydrocarbon and smoke emission are attained while using BEB5 blend at full load of the engine. However, there is an adverse effect in case of nitrogen oxide emission.


Author(s):  
S. Vedharaj ◽  
R. Vallinayagam ◽  
S. Mani Sarathy ◽  
Robert W. Dibble

In this research, the flow and ignition properties of vegetable oil (VO) are improved by blending it with diethyl ether (DEE). DEE, synthesized from ethanol, has lower viscosity than diesel and VO. When DEE is blended with VO, the resultant DEEVO mixtures have favorable properties for compression ignition (CI) engine operation. As such, DEEVO20 (20% DEE + 80% VO) and DEEVO40 (40% DEE + 60% VO) were initially considered in the current study. The viscosity of VO is 32.4*10−6 m2/s; the viscosity is reduced with the increase of DEE in VO. In this study, our blends were limited to a maximum of 40% DEE in VO. The viscosity of DEEVO40 is 2.1*10−6 m2/s, which is comparable to that of diesel (2.3*10−6 m2/s). The lower boiling point and flash point of DEE improves the fuel spray and evaporation for DEEVO mixtures. In addition to the improvement in physical properties, the ignition quality of DEEVO mixtures is also improved, as DEE is a high cetane fuel (DCN = 139). The ignition characteristics of DEEVO mixtures were studied in an ignition quality tester (IQT). There is an evident reduction in ignition delay time (IDT) for DEEVO mixtures compared to VO. The IDT of VO (4.5 ms), DEEVO20 (3.2 ms) and DEEVO40 (2.7 ms) was measured in IQT. Accordingly, the derived cetane number (DCN) of DEEVO mixtures increased with the increase in proportion of DEE. The reported mixtures were also tested in a single cylinder CI engine. The start of combustion (SOC) was advanced for DEEVO20 and DEEVO40 compared to diesel, which is attributed to the high DCN of DEEVO mixtures. On the other hand, the peak heat release rate decreased for DEEVO mixtures compared to diesel. Gaseous emissions such as nitrogen oxide (NOX), total hydrocarbon (THC) and smoke were reduced for DEEVO mixtures compared to diesel. The physical and ignition properties of VO are improved by the addition of DEE, and thus, the need for the trans-esterification process is averted. Furthermore, this blending strategy is simpler and enables operation of straight run oils and fats in CI engine, replacing diesel completely.


Author(s):  
Eric Bermudez ◽  
Andrew McDaniel ◽  
Terrence Dickerson ◽  
Dianne Luning Prak ◽  
Len Hamilton ◽  
...  

A new hydroprocessed depolymerized cellulosic diesel (HDCD) fuel has been developed using a process which takes biomass feedstock (principally cellulosic wood) to produce a synthetic fuel that has nominally ½ cycloparaffins and ½ aromatic hydrocarbons in content. This HDCD fuel with a low cetane value (derived cetane number from the ignition quality tester, DCN = 27) was blended with naval distillate fuel (NATO symbol F-76) in various quantities and tested in order to determine how much HDCD could be blended before diesel engine operation becomes problematic. Blends of 20% HDCD (DCN = 45), 30%, 40% (DCN = 41), and 60% HDCD (DCN = 37) by volume were tested with conventional naval distillate fuel (DCN = 49). Engine start performance was evaluated with a conventional mechanically direct injected (DI) Yanmar engine and a Waukesha mechanical indirect injected (IDI) Cooperative Fuels Research (CFR) diesel engine and showed that engine start times increased steadily with increasing HDCD content. Longer start times with increasing HDCD content were the result of some engine cycles with poor combustion leading to a slower rate of engine acceleration toward rated speed. A repeating sequence of alternating cycles which combust followed by a noncombustion cycle was common during engine run-up. Additionally, steady-state engine testing was also performed using both engines. HDCD has a significantly higher bulk modulus than F76 due to its very high aromatic content, and the engines showed earlier start of injection (SOI) timing with increasing HDCD content for equivalent operating conditions. Additionally, due to the lower DCN, the higher HDCD blends showed moderately longer ignition delay (IGD) with moderately shorter overall burn durations. Thus, the midcombustion metric (CA50: 50% burn duration crank angle position) was only modestly affected with increasing HDCD content. Increasing HDCD content beyond 40% leads to significantly longer start times.


Author(s):  
G D Zhang ◽  
H Liu ◽  
X X Xia ◽  
W G Zhang ◽  
J H Fang

The physical and chemical properties of some oxygenated compounds are discussed, including dimethoxymethane (methylal, or DMM), dimethyl carbonate (DMC), and ethyl acetate. In particular, DMC may be a promising additive for diesel fuel owing to its high oxygen content, no carbon-carbon atomic bonds, suitable boiling point, and solubility in diesel fuel. The aim of this research was to study the combustion characteristics and performance of diesel engines operating on diesel fuel mixed with DMC. The experimental results have shown that particulate matter (PM) emissions can be reduced using the DMC oxygenated compound. The combustion analysis indicated that the ignition delay of the engine fuelled with DMC-diesel blended fuel is longer, but combustion duration is much shorter, and the thermal efficiency is increased compared with that of a base diesel engine. Further, if injection is also delayed, NOx emissions can be reduced while PM emissions are still reduced significantly. The experimental study found that diesel engines fuelled with DMC additive had improved combustion and emission performances.


Due to fast depletion of fuel and for the huge demand of various engine fuels in large sectors and power generation, thse biodiesel which is derived from biological wastes can be a substitute of pure diesel oil. Diesel engine has the benefits of low fuel consumption, high potency, smart economical and dynamic performance. However at the identical time, the diesel engine has high NOx and soot emissions. And these two sorts of emissions provides a trade-off relationship which can bring difficulties to satisfy the necessities of emission rules of NOx and soot. This particular paper primarily reviews regarding using of preheated bio-diesel that contains 20 percentage of pure sunflower oil (biological name-Helianthus annuus) and analyses its performance characteristics for selected blend with completely variable loads. Various experiments were carried out by employing a four stroke single cylinder, direct injection, water cooled diesel engine with suitable specifications. Helianthus oil is mixed with bio diesel for fast burning inside the engine cylinder and by doing so , the Cetane number is quite high that leads to the ignition delay shorter. Therefore the overall content is preheated somewhat in order to lift its temperature so as to boost the burning process. Incorporating to this , it reduces the various emissions such as NOx, CO and smoke capacity by 2% to 3%. Various parameters are required to outline the analysis of combustion and performance characteristics of the test fuel like brake thermal efficiency(BTE),basic specific fuel consumption(BSFC), basic specific energy consumption (BSEC),temperature of the exhaust gas and emissions like NOx, unburn hydrocarbons(HC), carbon monoxide(CO) and smoke were carried out in the specified engine


Author(s):  
Bobbili Prasadarao ◽  
Aditya Kolakoti ◽  
Pudi Sekhar

: This paper presents the production of biodiesel from three different non edible oils of Pongamia, Mahua and Jatropha as an alternative fuel for diesel engine. Biodiesel is produced by followed transesterification process, using catalyst sodium hydroxide (NaOH) and methyl alcohol (CH3OH). A single cylinder four stroke three-wheeler auto diesel engine is used to evaluate the exhaust emission characteristics at a constant speed of 1500rpm with varying loads. Diesel as a reference fuel and cent percent of Pongamia Methyl Ester (PME), Mahua Methyl Ester (MME) and Jatropha Methyl Ester (JME) are used as an alternative fuel. The physicochemical properties of biodiesels are within the limits of international standards (ASTM D6751) noticeably. The results of tested biodiesels offer low exhaust emissions compared to diesel fuel, owing to presence of molecular oxygen and high cetane number. At maximum load the NOx emission reduced by 18.41% for JME, 17.46% for MME and 7.61% for PME. Low levels of CO emissions are recorded for JME (66%) followed by MME (33%) and PME (22%). Unburnt hydrocarbon emissions were reduced by 85.75% for JME and MME, for PME 14.28% reduction is observed. Exhaust smoke emissions are also reduced for PME and MME by 18.84%, for JME 14.49%. As a conclusion, it is observed that all the methyl esters exhibit significant reduction in harmful exhaust emissions compared to diesel fuel and JME is noted as a better choice.


Sign in / Sign up

Export Citation Format

Share Document