scholarly journals Numerical Investigation of Injection-Induced Fracture Propagation in Brittle Rocks with Two Injection Wells by a Modified Fluid-Mechanical Coupling Model

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4718
Author(s):  
Song Wang ◽  
Jian Zhou ◽  
Luqing Zhang ◽  
Zhenhua Han

Hydraulic fracturing is a key technical means for stimulating tight and low permeability reservoirs to improve the production, which is widely employed in the development of unconventional energy resources, including shale gas, shale oil, gas hydrate, and dry hot rock. Although significant progress has been made in the simulation of fracturing a single well using two-dimensional Particle Flow Code (PFC2D), the understanding of the multi-well hydraulic fracturing characteristics is still limited. Exploring the mechanisms of fluid-driven fracture initiation, propagation and interaction under multi-well fracturing conditions is of great theoretical significance for creating complex fracture networks in the reservoir. In this study, a series of two-well fracturing simulations by a modified fluid-mechanical coupling algorithm were conducted to systematically investigate the effects of injection sequence and well spacing on breakdown pressure, fracture propagation and stress shadow. The results show that both injection sequence and well spacing make little difference on breakdown pressure but have huge impacts on fracture propagation pressure. Especially under hydrostatic pressure conditions, simultaneous injection and small well spacing increase the pore pressure between two injection wells and reduce the effective stress of rock to achieve lower fracture propagation pressure. The injection sequence can change the propagation direction of hydraulic fractures. When the in-situ stress is hydrostatic pressure, simultaneous injection compels the fractures to deflect and tend to propagate horizontally, which promotes the formation of complex fracture networks between two injection wells. When the maximum in-situ stress is in the horizontal direction, asynchronous injection is more conducive to the parallel propagation of multiple hydraulic fractures. Nevertheless, excessively small or large well spacing reduces the number of fracture branches in fracture networks. In addition, the stress shadow effect is found to be sensitive to both injection sequence and well spacing.

2005 ◽  
Vol 9 ◽  
pp. 127-136 ◽  
Author(s):  
Tian Hong Yang ◽  
Leslie George Tham ◽  
S.Y. Wang ◽  
Wan Cheng Zhu ◽  
Lian Chong Li ◽  
...  

A numerical model is developed to study hydraulic fracturing in permeable and heterogeneous rocks, coupling with the flow and failure process. The effects of flow and in-situ stress ratio on fracture, material homogeneity and breakdown pressure are specifically studied.


1978 ◽  
Vol 18 (01) ◽  
pp. 27-32 ◽  
Author(s):  
E.R. Simonson ◽  
A.S. Abou-Sayed ◽  
R.J. Clifton

Abstract Hydraulic fracture containment is discussed in relationship to linear elastic fracture mechanics. Three cases are analyzed,the effect of different material properties for the pay zone and the barrier formation,the characteristics of fracture propagation into regions of varying in-situ stress, propagation into regions of varying in-situ stress, andthe effect of hydrostatic pressure gradients on fracture propagation into overlying or underlying barrier formations. Analysis shows the importance of the elastic properties, the in-situ stresses, and the pressure gradients on fracture containment. Introduction Application of massive hydraulic fracture (MHF) techniques to the Rocky Mountain gas fields has been uneven, with some successes and some failures. The primary thrust of rock mechanics research in this area is to understand those factors that contribute to the success of MHF techniques and those conditions that lead to failures. There are many possible reasons why MHF techniques fail, including migration of the fracture into overlying or underlying barrier formations, degradation of permeability caused by application of hydraulic permeability caused by application of hydraulic fracturing fluid, loss of fracturing fluid into preexisting cracks or fissures, or extreme errors in preexisting cracks or fissures, or extreme errors in estimating the quantity of in-place gas. Also, a poor estimate of the in-situ permeability can result in failures that may "appear" to be caused by the hydraulic fracture process. Previous research showed that in-situ permeabilities can be one order of magnitude or more lower than permeabilities measured at near atmospheric conditions. Moreover, studies have investigated the degradation in both fracture permeability and formation permeability caused by the application of hydraulic fracture fluids. Further discussion of this subject is beyond the scope of this paper. This study will deal mainly with the containment of hydraulic fractures to the pay zone. In general, the lithology of the Rocky Mountain region is composed of oil- and gas-bearing sandstone layers interspaced with shales (Fig. 1). However, some sandstone layers may be water aquifers and penetration of the hydraulic fracture into these penetration of the hydraulic fracture into these aquifer layers is undesirable. Also, the shale layers can separate producible oil- and gas-bearing zones from nonproducible ones. Shale layers between the pay zone and other zones can be vital in increasing successful stimulation. If the shale layers act as barrier layers, the hydraulic fracture can be contained within the pay zone. The in-situ stresses and the stiffness, as characterized by the shear modulus of the zones, play significant roles in the containment of a play significant roles in the containment of a hydraulic fracture. The in-situ stresses result from forces in the earth's crust and constitute the compressive far-field stresses that act to close the hydraulic fracture. Fig. 2 shows a schematic representation of in-situ stresses acting on a vertical hydraulic fracture. Horizontal components of in-situ stresses may vary from layer to layer (Fig. 2). For example, direct measurements of in-situ stresses in shales has shown the minimum horizontal principal stress is nearly equal to the overburden principal stress is nearly equal to the overburden stress. SPEJ P. 27


2021 ◽  
Author(s):  
Zhao Hui ◽  
Sheng Guanglong ◽  
Huang Luoyi ◽  
Zhong Xun ◽  
Fu Jingang ◽  
...  

Abstract Accurately characterizing fracture network morphology is necessary for flow simulation and fracturing evaluation. The complex natural fractures and reservoir heterogeneity in unconventional reservoirs make the induced fracture network resulting from hydraulic fracturing more difficult to describe. Existing fracture propagation simulation and fracture network inversion methods cannot accurately match actual fracture network morphology. Considering the lightning breakdown similar as fracture propagation, a new efficient approach for inversion of fracture network morphology is proposed. Based on the dielectric breakdown model (DBM) for lightning breakdown simulation and similarity principle, an induced fracture propagation algorithm integrating reservoir in-situ stress, rock mechanical parameters, and stress shadow effect is proposed. The fractal index and random function are coupled to quantitatively characterize the probability distribution of induced fracture propagation path. At the same time, a matching rate function is proposed to quantitatively evaluate the fitting between fracture network morphology and the micro seismic data. Combined with automatic history matching method, the actual fracture network morphology can be inverted with the matching rate as objective function. The proposed approach is applied to fracture network simulation of mult-fractured horizontal wells of shale oil reservoir in China, and the fracture networks from inversion fit well with the micro seismic data. A simulation of 94 fractures in the 32 section of Well X2 shows that the well propagates more obvious branch fractures. The single-wing fracture network communicates approximately 200m horizontally and approximately 10m vertically. In single fracture flow simulation, it is necessary to consider the influence of complex fracture network morphology, but when simulating fluid flow for a single well or even a reservoir, only the main fracture needs to be considered. This paper proposes an induced fracture propagation algorithm that integrates reservoir in-situ stress, rock mechanical parameters, and stress shadowing effects. This algorithm greatly improves the calculation efficiency on the premise of ensuring the accuracy of induced fracture network morphology. The approach in this paper provides a theoretical basis for flow simulation of stimulated reservoirs and optimization of fracture networks.


2021 ◽  
pp. 1-14
Author(s):  
Qian Gao ◽  
Ahmad Ghassemi

Summary The impacts of formation layering on hydraulic fracture containment and on pumping energy are critical factors in a successful stimulation treatment. Conventionally, it is considered that the in-situ stress is the dominant factor controlling the fracture height. The influence of mechanical properties on fracture height growth is often ignored or is limited to consideration of different Young’s moduli. Also, it is commonly assumed that the interfaces between different layers are perfectly bounded without slippage, and interface permeability is not considered. In-situ experiments have demonstrated that variation of modulus and in-situ stress alone cannot explain the containment of hydraulic fractures observed in the field (Warpinski et al. 1998). Enhanced toughness, in-situ stress, interface slip, and energy dissipation in the layered rocks should be combined to contribute to the fracture containment analysis. In this study, we consider these factors in a fully coupled 3D hydraulic fracture simulator developed based on the finite element method. We use laboratory and numerical simulations to investigate these factors and how they affect hydraulic fracture propagation, height growth, and injection pressure. The 3D fully coupled hydromechanical model uses a special zero-thickness interface element and the cohesive zone model (CZM) to simulate fracture propagation, interface slippage, and fluid flow in fractures. The nonlinear mechanical behavior of frictional sliding along interface surfaces is considered. The hydromechanical model has been verified successfully through benchmarked analytical solutions. The influence of layered Young’s modulus on fracture height growth in layered formations is analyzed. The formation interfaces between different layers are simulated explicitly through the use of the hydromechanical interface element. The impacts of mechanical and hydraulic properties of the formation interfaces on hydraulic fracture propagation are studied. Hydraulic fractures tend to propagate in the layer with lower Young’s modulus so that soft layers could potentially act as barriers to limit the height growth of hydraulic fractures. Contrary to the conventional view, the location of hydraulic fracturing (in softer vs. stiffer layers) does affect fracture geometry evolution. In addition, depending on the mechanical properties and the conductivity of the interfaces, the shear slippage and/or opening along the formation interfaces could result in flow along the interface surfaces and terminate the fracture growth. The frictional slippage along the interfaces can serve as an effective mechanism of containment of hydraulic fractures in layered formations. It is suggested that whether a hydraulic fracture would cross a discontinuity depends not only on the layers’ mechanical properties but also on the hydraulic properties of the discontinuity; both the frictional slippage and fluid pressure along horizontal formation interfaces contribute to the reinitiation of a hydraulic fracture from a pre-existing flaw along the interfaces, producing an offset from the interception point to the reinitiation point.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Yuepeng Wang ◽  
Xiangjun Liu ◽  
Lixi Liang ◽  
Jian Xiong

The complexity of hydraulic fractures (HF) significantly affects the success of reservoir reconstruction. The existence of a bedding plane (BP) in shale impacts the extension of a fracture. For shale reservoirs, in order to investigate the interaction mechanisms of HF and BPs under the action of coupled stress-flow, we simulate the processes of hydraulic fracturing under different conditions, such as the stress difference, permeability coefficients, BP angles, BP spacing, and BP mechanical properties using the rock failure process analysis code (RFPA2D-Flow). Simulation results showed that HF spread outward around the borehole, while the permeability coefficient is uniformly distributed at the model without a BP or stress difference. The HF of the formation without a BP presented a pinnate distribution pattern, and the main direction of the extension is affected by both the ground stress and the permeability coefficient. When there is no stress difference in the model, the fracture extends along the direction of the larger permeability coefficient. In this study, the in situ stress has a greater influence on the extension direction of the main fracture when using the model with stress differences of 6 MPa. As the BP angle increases, the propagation of fractures gradually deviates from the BP direction. The initiation pressure and total breakdown pressure of the models at low permeability coefficients are higher than those under high permeability coefficients. In addition, the initiation pressure and total breakdown pressure of the models are also different. The larger the BP spacing, the higher the compressive strength of the BP, and a larger reduction ratio (the ratio of the strength parameters of the BP to the strength parameters of the matrix) leads to a smaller impact of the BP on fracture initiation and propagation. The elastic modulus has no effect on the failure mode of the model. When HF make contact with the BP, they tend to extend along the BP. Under the same in situ stress condition, the presence of a BP makes the morphology of HF more complex during the process of propagation, which makes it easier to achieve the purpose of stimulated reservoir volume (SRV) fracturing and increased production.


SPE Journal ◽  
2019 ◽  
Vol 24 (05) ◽  
pp. 2148-2162 ◽  
Author(s):  
Pengcheng Fu ◽  
Jixiang Huang ◽  
Randolph R. Settgast ◽  
Joseph P. Morris ◽  
Frederick J. Ryerson

Summary The height growth of a hydraulic fracture is known to be affected by many factors that are related to the layered structure of sedimentary rocks. Although these factors are often used to qualitatively explain why hydraulic fractures usually have well–bounded height growth, most of them cannot be directly and quantitatively characterized for a given reservoir to enable a priori prediction of fracture–height growth. In this work, we study the role of the “roughness” of in–situ–stress profiles, in particular alternating low and high stress among rock layers, in determining the tendency of a hydraulic fracture to propagate horizontally vs. vertically. We found that a hydraulic fracture propagates horizontally in low–stress layers ahead of neighboring high–stress layers. Under such a configuration, a fracture–mechanics principle dictates that the net pressure required for horizontal growth of high–stress layers within the current fracture height is significantly lower than that required for additional vertical growth across rock layers. Without explicit consideration of the stress–roughness profile, the system behaves as if the rock is tougher against vertical propagation than it is against horizontal fracture propagation. We developed a simple relationship between the apparent differential rock toughness and characteristics of the stress roughness that induce equivalent overall fracture shapes. This relationship enables existing hydraulic–fracture models to represent the effects of rough in–situ stress on fracture growth without directly representing the fine–resolution rough–stress profiles.


2001 ◽  
Vol 41 (1) ◽  
pp. 251
Author(s):  
M.C. Daniels ◽  
D.T. Moffat ◽  
D.A. Castillo

The Gobe Main and SE Gobe Fields were discovered in the early 1990s in the Papuan Fold Belt in the Highlands of Papua New Guinea. Heavily karstified Darai Limestone at the surface and heli-supported drilling made field appraisal problematic and expensive. With initial well spacing upwards of several kilometres, these fields were thought to be ‘tank’ type models, with field-wide extrapolations of gas-oil and oil-water contacts.The main Iagifu Sandstone reservoir in the Gobe fields comprises several fluvial and near-shore sand bodies, which are readily correlatable across the fields. The reservoir units display discrete coarsening upward sequences containing medium (~17%) porosity, medium to high permeability (>100 mD) sandstones. Although several different depositional facies are interpreted within the Iagifu reservoir, sand units are extensive on the scale of the Gobe structures and do not appear to be producing significant lateral boundaries or reservoir compartmentalisation.Geomechanical analysis has enabled the calculation of in-situ stress magnitudes and establishment of a geomechanical model for Gobe. Locally, the Gobe Main Field appears to be in a strike-slip stress regime (SHmax>Sv>Shmin). SHmax directions vary from NNE– SSW to NE–SW. Stress magnitudes indicate the structure is near frictional equilibrium, with a high proportion of natural fractures and faults critically stressed for shear failure. Since first oil in early 1998, performance results have indicted pressure segregation of many of the wells in both the Gobe Main and SE Gobe fields. Although only one fault has been positively identified at the reservoir level, the mapped faults appear to have sand-on-sand juxtaposition with minimal (


SPE Journal ◽  
2020 ◽  
Vol 25 (06) ◽  
pp. 3091-3110
Author(s):  
Ming Chen ◽  
Shicheng Zhang ◽  
Tong Zhou ◽  
Xinfang Ma ◽  
Yushi Zou

Summary Creating uniform multiple fractures is a challenging task due to reservoir heterogeneity and stress shadow. Limited-entry perforation and in-stage diversion are commonly used to improve multifracture treatments. Many studies have investigated the mechanism of limited-entry perforation for multifracture treatments, but relatively few have focused on the in-stage diversion process. The design of in-stage diversion is usually through trial and error because of the lack of a simulator. In this study, we present a fully coupled planar 2D multifracture model for simulating the in-stage diversion process. The objective is to evaluate flux redistribution after diversion and optimize the dosage of diverters and diversion timing under different in-stage in-situ stress difference. Our model considers ball sealer allocation and solves flux redistribution after diversion through a fully coupled multifracture model. A supertimestepping explicit algorithm is adopted to solve the solid/fluid coupling equations efficiently. Multifracture fronts are captured by using tip asymptotes and an adaptive time-marching approach. The modeling results are validated against analytical solutions for a plane-strain Khristianovic-Geertsma de Klerk (KGD) model. A series of numerical simulations are conducted to investigate the multifracture growth under different in-stage diversion operations. Parametric studies reveal that the in-stage in-situ stress difference is a critical parameter for diversion designs. When the in-situ stress difference is larger than 2 MPa, the fracture in the high-stress zone can hardly be initiated before diversion for a general fracturing design. More ball sealers are required for the formations with higher in-stage in-situ stress difference. The diverting time should be earlier for formations with high in-stage stress differences as well. Adding more perforation holes in the zone with higher in-situ stress is recommended to achieve even flux distribution. The results of this study can help understand the multifracture growth mechanism during in-stage diversion and optimize the diversion design timely.


2010 ◽  
Vol 29-32 ◽  
pp. 1369-1373
Author(s):  
Wan Chun Zhao ◽  
Ting Ting Wang ◽  
Guo Shuai Ju

The mechanical distribution of refracturing rock around well is Considered, the induced stress of vertical fractured well changes in pore pressure is first to establish, taking into account the fluid compressibility, the introduction of the initial artificial fracture fluid factor, an evolution model of in-situ stress is built up for initial fracture. Consider the impact of temperature on the reservoir rock, an evolution model of the temperature induced stress model is built up, Combined with in-situ stress field, an evolution model of Mechanical determination conditions of re-fracture well create new fracture is built up. Calculation of a block of Jilin Oilfield injection wells by the three effects of stress around an oil well, the theoretical calculation results are consistent with the field.


1982 ◽  
Vol 22 (03) ◽  
pp. 341-349 ◽  
Author(s):  
H.A.M. van Eekelen

Abstract One of the main problems in hydraulic fracturing technology is the prediction of fracture height. In particular, the question of what constitutes a barrier to vertical fracture propagation is crucial to the success of field operations. An analysis of hydraulic fracture containment effects has been performed. The main conclusion is that in most cases the fracture will penetrate into the layers adjoining the pay zone, the depth of penetration being determined by the differences in stiffness and in horizontal in-situ stress between the pay zone and the adjoining layers. For the case of a stiffness contrast, an estimate of the penetration depth is given. Introduction Current design procedures for hydraulic fracturing of oil and gas reservoirs are based predominantly on the fracturing theories of Perkins and Kern, Nordgren, and Geertsma and de Klerk. In the model proposed by Perkins and Kern, and improved by Nordgren, the formation stiffness is concentrated in vertical planes perpendicular to the direction of fracture propagation, The fracture cross section in these planes is assumed elliptical, and the stiffness of the formation in the horizontal plane is neglected. In the model proposed by Geertsma and de Klerk, the stiffness of the formation is concentrated in the horizontal plane. The fracture cross section in the vertical plane is assumed rectangular, and the stiffness in the vertical plane is neglected. In both models, the fluid pressure is assumed a function of the distance from the borehole, independent of the transverse coordinates. The theory by Perkins and Kern is more appropriate for long fractures (L/H >1, where L and H are length and height of the fracture), whereas the model by Geertsma and de Klerk is applicable for short fractures, L/H less than 1. The main shortcoming of these fracture-design procedures is that they assume a constant, preassigned fracture height. H. The value of H has a strong influence on the result, for fracture length, fracture width, and proppant transport. Usually, the estimated fracture height is based on assumed "barrier action" of rock layers above and below the pay zone. This situation is rather unsatisfactory. Moreover, if these layers do not contain the fracture, large volumes of fracturing fluid may be lost in fracturing unproductive strata, and communication with unwanted formations may be opened up. Whether an adjacent formation will act as a fracture barrier may depend on a number of factors: differences in in-situ stress, elastic properties, fracture toughness, ductility, and permeability; and the bonding at the interface. We analyze these factors with respect to their relative influence on fracture containment. Differences in in-situ stress and differences in elastic properties affect the global or overall stress field around the fracture, and, hence, the three-dimensional shape of the fracture. This shape, together with the horizontal and vertical fracture propagation rates, determines the fluid pressure distribution in the fracture, which in turn affects the stress field around the fracture. Consequently, the elastic stress field, the fluid pressure field, and the fracture propagation pattern are intimately coupled, which makes the fracture propagation problem a complicated one. Whether at a certain point of the fracture edge the fracture will propagate is determined by the intensity of the stress concentration at that point. This stress concentration depends on the global stress distribution in and around the fracture, but it also is affected directly by local ductility, permeability, and elastic modulus in the tip region. SPEJ P. 341^


Sign in / Sign up

Export Citation Format

Share Document