scholarly journals CO2 Foam and CO2 Polymer Enhanced Foam for Heavy Oil Recovery and CO2 Storage

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5735
Author(s):  
Ali Telmadarreie ◽  
Japan J Trivedi

Enhanced oil recovery (EOR) from heavy oil reservoirs is challenging. High oil viscosity, high mobility ratio, inadequate sweep, and reservoir heterogeneity adds more challenges and severe difficulties during any EOR method. Foam injection showed potential as an EOR method for challenging and heterogeneous reservoirs containing light oil. However, the foams and especially polymer enhanced foams (PEF) for heavy oil recovery have been less studied. This study aims to evaluate the performance of CO2 foam and CO2 PEF for heavy oil recovery and CO2 storage by analyzing flow through porous media pressure profile, oil recovery, and CO2 gas production. Foam bulk stability tests showed higher stability of PEF compared to that of surfactant-based foam both in the absence and presence of heavy crude oil. The addition of polymer to surfactant-based foam significantly improved its dynamic stability during foam flow experiments. CO2 PEF propagated faster with higher apparent viscosity and resulted in more oil recovery compared to that of CO2 foam injection. The visual observation of glass column demonstrated stable frontal displacement and higher sweep efficiency of PEF compared to that of conventional foam. In the fractured rock sample, additional heavy oil recovery was obtained by liquid diversion into the matrix area rather than gas diversion. Aside from oil production, the higher stability of PEF resulted in more gas storage compared to conventional foam. This study shows that CO2 PEF could significantly improve heavy oil recovery and CO2 storage.

SPE Journal ◽  
2016 ◽  
Vol 21 (05) ◽  
pp. 1655-1668 ◽  
Author(s):  
Ali Telmadarreie ◽  
Japan J. Trivedi

Summary Carbonate reservoirs, deposited in the Western Canadian Sedimentary Basin (WCSB), hold significant reserves of heavy crude oil that can be recovered by nonthermal processes. Solvent, gas, water, and water-alternating-gas (WAG) injections are the main methods for carbonate-heavy-oil recovery in the WCSB. Because of the fractured nature of carbonate formations, many advantages of these production methods are usually in contrast with their low recovery factor. Alternative processes are therefore needed to increase oil-sweep efficiency from carbonate reservoirs. Foam/polymer-enhanced-foam (PEF) injection has gained interest in conventional heavy-oil recovery in recent times. However, the oil-recovery process by foam, especially PEF, in conjunction with solvent injection is less understood in fractured heavy-oil-carbonate reservoirs. The challenge is to understand how the combination of surfactant, gas, and polymer allows us to better access the matrix and efficiently sweep the oil. This study introduces a new approach to access the unrecovered heavy oil in fractured-carbonate reservoirs. Carbon dioxide (CO2) foam and CO2 PEF were used to decrease oil saturation after solvent injection, and their performance was compared with gas injection. A specially designed fractured micromodel was used to visualize the pore-scale phenomena during CO2-foam/PEF injection. In addition, the static bulk performances of CO2 foam/PEF were analyzed in the presence of heavy crude oil. A high-definition camera was used to capture high-quality images. The results showed that in both static and dynamic studies the PEF had high stability. Unlike CO2 PEF, CO2 foam lamella broke much faster and resulted in the collapse of the foam during heavy-oil recovery after solvent flooding. It appeared that foam played a greater role than just gas-mobility control. Foam showed outstanding improvement in heavy-oil recovery over gas injection. The presence of foam bubbles was the main reason to improve heavy-oil-sweep efficiency in heterogeneous porous media. When the foam bubbles advanced through pore throats, the local capillary number increased enough to displace the emulsified oil. PEF bubbles generated an additional force to divert surfactant/polymer into the matrix. Overall, CO2 foam and PEF remarkably increased heavy-oil recovery after solvent injection into the fractured reservoir.


2021 ◽  
Author(s):  
Ali Telmadarreie ◽  
Christopher Johnsen ◽  
Steven L. Bryant

Abstract This study designs a novel complex fluid (foam/emulsion) using as main components gas, low-toxicity solvents (green solvents) which may promote oil mobilization, and synergistic foam stabilizers (i.e. nanoparticles and surfactants) to improve sweep efficiency. This nanoparticle-enabled green solvent foam (NGS-foam) avoids major greenhouse gas emissions from the thermal recovery process and improves the performance of conventional green solvent-based methods (non-thermal) by increasing the sweep efficiency, utilizing less solvent while producing more oil. Surfactants and nanoparticles were screened in static tests to generate foam in the presence of a water-soluble/oil-soluble solvent and heavy crude oil from a Canadian oil field (1600 cp). The liquid phase of NGS-foam contains surfactant, nanoparticle, and green solvent (GS) all dispersed in the water phase. Nitrogen was used as the gas phase. Fluid flow experiments in porous media with heterogeneous permeability structure mimicking natural environments were performed to demonstrate the dynamic stability of the NGS-foam for heavy oil recovery. The propagation of the pre-generated foam was monitored at 10 cm intervals over the length of porous media (40 cm). Apparent viscosity, pressure gradient, inline measurement of effluent density, and oil recovery were recorded/calculated to evaluate the NGS-foam performance. The outcomes of static experiments revealed that surfactant alone cannot stabilize the green solvent foam and the presence of carefully chosen nanoparticles is crucial to have stable foam in the presence of heavy oil. The results of NGS-foam flow in heterogeneous porous media demonstrated a step-change improvement in oil production such that more than 60% of residual heavy oil was recovered after initial waterflood. This value of residual oil recovery was significantly higher than other scenarios tested in this study (i.e. GS- water and gas co-injection, conventional foam without GS, GS-foam stabilized with surfactant only and GS-waterflood). The increased production occurred because NGS-foam remained stable in the flowing condition, improves the sweep efficiency and increases the contact area of the solvent with oil. The latter factor is significant: comparing to GS-waterflood, NGS-foam produces a unit volume of oil faster with less solvent and up to 80% less water. Consequently, the cost of solvent per barrel of incremental oil will be lower than for previously described solvent applications. In addition, due to its water solubility, the solvent can be readily recovered from the reservoir by post flush of water and thus re-used. The NGS-foam has several potential applications: recovery from post-CHOPS reservoirs (controlling mobility in wormholes and improving the sweep efficiency while reducing oil viscosity), fracturing fluid (high apparent viscosity to carry proppant and solvent to promote hydrocarbon recovery from matrix while minimizing water invasion), and thermal oil recovery (hot NGS-foam for efficient oil viscosity reduction and sweep efficiency improvement).


2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Zhanxi Pang ◽  
Peng Qi ◽  
Fengyi Zhang ◽  
Taotao Ge ◽  
Huiqing Liu

Heavy oil is an important hydrocarbon resource that plays a great role in petroleum supply for the world. Co-injection of steam and flue gas can be used to develop deep heavy oil reservoirs. In this paper, a series of gas dissolution experiments were implemented to analyze the properties variation of heavy oil. Then, sand-pack flooding experiments were carried out to optimize injection temperature and injection volume of this mixture. Finally, three-dimensional (3D) flooding experiments were completed to analyze the sweep efficiency and the oil recovery factor of flue gas + steam flooding. The role in enhanced oil recovery (EOR) mechanisms was summarized according to the experimental results. The results show that the dissolution of flue gas in heavy oil can largely reduce oil viscosity and its displacement efficiency is obviously higher than conventional steam injection. Flue gas gradually gathers at the top to displace remaining oil and to decrease heat loss of the reservoir top. The ultimate recovery is 49.49% that is 7.95% higher than steam flooding.


2021 ◽  
Vol 143 (7) ◽  
Author(s):  
Ali Alarbah ◽  
Ezeddin Shirif ◽  
Na Jia ◽  
Hamdi Bumraiwha

Abstract Chemical-assisted enhanced oil recovery (EOR) has recently received a great deal of attention as a means of improving the efficiency of oil recovery processes. Producing heavy oil is technically difficult due to its high viscosity and high asphaltene content; therefore, novel recovery techniques are frequently tested and developed. This study contributes to general progress in this area by synthesizing an acidic Ni-Mo-based liquid catalyst (LC) and employing it to improve heavy oil recovery from sand-pack columns for the first time. To understand the mechanisms responsible for improved recovery, the effect of the LC on oil viscosity, density, interfacial tension (IFT), and saturates, aromatics, resin, and asphaltenes (SARA) were assessed. The results show that heavy oil treated with an acidic Ni-Mo-based LC has reduced viscosity and density and that the IFT of oil–water decreased by 7.69 mN/m, from 24.80 mN/m to 17.11 mN/m. These results are specific to the LC employed. The results also indicate that the presence of the LC partially upgrades the structure and group composition of the heavy oil, and sand-pack flooding results show that the LC increased the heavy oil recovery factor by 60.50% of the original oil in place (OOIP). Together, these findings demonstrate that acidic Ni-Mo-based LCs are an effective form of chemical-enhanced EOR and should be considered for wider testing and/or commercial use.


SPE Journal ◽  
2019 ◽  
Vol 24 (02) ◽  
pp. 413-430
Author(s):  
Zhanxi Pang ◽  
Lei Wang ◽  
Zhengbin Wu ◽  
Xue Wang

Summary Steam-assisted gravity drainage (SAGD) and steam and gas push (SAGP) are used commercially to recover bitumen from oil sands, but for thin heavy-oil reservoirs, the recovery is lower because of larger heat losses through caprock and poorer oil mobility under reservoir conditions. A new enhanced-oil-recovery (EOR) method, expanding-solvent SAGP (ES-SAGP), is introduced to develop thin heavy-oil reservoirs. In ES-SAGP, noncondensate gas and vaporizable solvent are injected with steam into the steam chamber during SAGD. We used a 3D physical simulation scale to research the effectiveness of ES-SAGP and to analyze the propagation mechanisms of the steam chamber during ES-SAGP. Under the same experimental conditions, we conducted a contrast analysis between SAGP and ES-SAGP to study the expanding characteristics of the steam chamber, the sweep efficiency of the steam chamber, and the ultimate oil recovery. The experimental results show that the steam chamber gradually becomes an ellipse shape during SAGP. However, during ES-SAGP, noncondensate gas and a vaporizable solvent gather at the reservoir top to decrease heat losses, and oil viscosity near the condensate layer of the steam chamber is largely decreased by hot steam and by solvent, making the boundary of the steam chamber vertical and gradually a similar, rectangular shape. As in SAGD, during ES-SAGP, the expansion mechanism of the steam chamber can be divided into three stages: the ascent stage, the horizontal-expansion stage, and the descent stage. In the ascent stage, the time needed is shorter during ES-SAGP than during SAGP. However, the other two stages take more time during nitrogen, solvent, and steam injection to enlarge the cross-sectional area of the bottom of the steam chamber. For the conditions in our experiments, when the instantaneous oil/steam ratio is lower than 0.1, the corresponding oil recovery is 51.11%, which is 7.04% higher than in SAGP. Therefore, during ES-SAGP, not only is the volume of the steam chamber sharply enlarged, but the sweep efficiency and the ultimate oil recovery are also remarkably improved.


SPE Journal ◽  
2020 ◽  
pp. 1-17
Author(s):  
Yang Zhao ◽  
Shize Yin ◽  
Randall S. Seright ◽  
Samson Ning ◽  
Yin Zhang ◽  
...  

Summary Combining low-salinity-water (LSW) and polymer flooding was proposed to unlock the tremendous heavy-oil resources on the Alaska North Slope (ANS). The synergy of LSW and polymer flooding was demonstrated through coreflooding experiments at various conditions. The results indicate that the high-salinity polymer (HSP) (salinity = 27,500 ppm) requires nearly two-thirds more polymer than the low-salinity polymer (LSP) (salinity = 2,500 ppm) to achieve the target viscosity at the condition of this study. Additional oil was recovered from LSW flooding after extensive high-salinity-water (HSW) flooding [3 to 9% of original oil in place (OOIP)]. LSW flooding performed in secondary mode achieved higher recovery than that in tertiary mode. Also, the occurrence of water breakthrough can be delayed in the LSW flooding compared with the HSW flooding. Strikingly, after extensive LSW flooding and HSP flooding, incremental oil recovery (approximately 8% of OOIP) was still achieved by LSP flooding with the same viscosity as the HSP. The pH increase of the effluent during LSW/LSP flooding was significantly greater than that during HSW/HSP flooding, indicating the presence of the low-salinity effect (LSE). The residual-oil-saturation (Sor) reduction induced by the LSE in the area unswept during the LSW flooding (mainly smaller pores) would contribute to the increased oil recovery. LSP flooding performed directly after waterflooding recovered more incremental oil (approximately 10% of OOIP) compared with HSP flooding performed in the same scheme. Apart from the improved sweep efficiency by polymer, the low-salinity-induced Sor reduction also would contribute to the increased oil recovery by the LSP. A nearly 2-year pilot test in the Milne Point Field on the ANS has shown impressive success of the proposed hybrid enhanced-oil-recovery (EOR) process: water-cut reduction (70 to less than 15%), increasing oil rate, and no polymer breakthrough so far. This work has demonstrated the remarkable economical and technical benefits of combining LSW and polymer flooding in enhancing heavy-oil recovery.


Energy ◽  
2022 ◽  
Vol 239 ◽  
pp. 122003
Author(s):  
Xiang Zhou ◽  
Xiuluan Li ◽  
Dehuang Shen ◽  
Lanxiang Shi ◽  
Zhien Zhang ◽  
...  

2006 ◽  
Vol 9 (02) ◽  
pp. 154-164 ◽  
Author(s):  
Mingzhe Dong ◽  
S.-S. Sam Huang ◽  
Keith Hutchence

Summary The methane pressure-cycling (MPC) process is an enhanced-oil-recovery (EOR) scheme intended for application in some heavy-oil reservoirs after termination of either primary or waterflood production. The essence of the process is the restoration of the solution-gas-drive mechanism. The restoration is accomplished by reinjecting an appropriate amount of solution gas (mainly methane) and then repressuring the gas back into solution by injecting water until approximate original reservoir pressure is reached. This, aside from the replacement of produced oil by water, recreates the primary-production conditions. This novel recovery technique is being developed to target the considerable portion of heavy-oil resources located in thin reservoirs. Primary and secondary methods have managed to recover at best 10% of the initial oil in place (IOIP). Heat losses to overburden and underburden or bottomwater zones make thermal methods unsuitable for thin reservoirs. Sandpack-flood tests in 30.5-cm (length) × 5.0-cm (diameter) sandpacks were carried out for oils with a range of dead-oil viscosities from 1700 to 5400 mPa.s. The results showed that the pressure-cycling process could create a favorable condition for recharged gas to contact the remaining oil in reservoirs. This restores the situation whereby substantial amounts of gas are in solution for further "primary" production. The effects on the efficiency of the MPC process of cycle termination strategy, oil viscosity, and mobile-water saturation were investigated. Simulations were conducted to investigate the MPC process in three heavy-oil reservoirs in Saskatchewan, Canada. The effects on the process of infill wells, oil viscosity, gas-injection rate, and the presence of wormholes in reservoirs were studied. Introduction Heavy oil in thick-pay reservoirs (i.e., >10 m) is commonly produced with thermal-recovery methods. These methods (steam injection and its variants) are generally not suitable for thin reservoirs because of heat losses to overburden and underburden or bottomwater zones (Fairfield and White 1982; Dyer et al. 1994). The world's large untapped oil resource remaining after recovery by conventional technology offers potential for exploitation by a suitably developed tertiary-recovery technique. For example, Saskatchewan accounts for 62% of Canada's total heavy-oil resources (Bowers and Drummond 1997), including 1.7 billion m3 of proved reserves and 3.7 billion m3 of probable reserves (Saskatchewan Energy and Mines 1998). Of the province's proven initial heavy oil in place, 97% is contained in reservoirs where the pay zone is less than 10 m, and 55% in reservoirs with a pay zone less than 5 m thick (Huang et al. 1987; Srivastava et al. 1993). Primary and secondary methods combined recover, on average, only about 7% of the proven IOIP (Saskatchewan Energy and Mines 1998). The incentive is strong for the development of appropriate EOR techniques that will maximize the recovery potential of and profitability from these thin heavy-oil reservoirs. Extensive literature is available on CO2, flue gas, and produced-gas injection for heavy-oil recovery, including slug displacement, water alternating gas (WAG), and cyclic (huff ‘n’ puff) processes (Huang et al. 1987; Srivastava et al. 1993, 1994, 1999; Srivastava and Huang 1997; Ma and Youngren 1994; Issever et al. 1993; Olenick et al. 1992). A comparative study of the oil-recovery behavior for a 14.1°API heavy oil with different injection gases (CO2, flue gas, and produced gas) showed that CO2 was the best-suited gas for EOR of heavy oils (Srivastava et al. 1999). Cyclic CO2 injection for heavy-oil recovery was tested in the field, and field case histories indicated that oil production was enhanced (Olenick et al. 1992). However, natural CO2 sources are not available to most oil reservoirs. The cost of CO2 capture from flue gas and other sources may range from U.S. $25 to $70/ton (Padamsey and Railton 1993). Produced gas is available in large quantities at a much lower cost. With this consideration, produced gas can be an economically effective agent for heavy-oil recovery by the cyclic-injection process.


SPE Journal ◽  
2019 ◽  
Vol 25 (01) ◽  
pp. 406-415 ◽  
Author(s):  
Arthur U. Rognmo ◽  
Noor Al-Khayyat ◽  
Sandra Heldal ◽  
Ida Vikingstad ◽  
Øyvind Eide ◽  
...  

Summary The use of nanoparticles for CO2-foam mobility is an upcoming technology for carbon capture, utilization, and storage (CCUS) in mature fields. Silane-modified hydrophilic silica nanoparticles enhance the thermodynamic stability of CO2 foam at elevated temperatures and salinities and in the presence of oil. The aqueous nanofluid mixes with CO2 in the porous media to generate CO2 foam for enhanced oil recovery (EOR) by improving sweep efficiency, resulting in reduced carbon footprint from oil production by the geological storage of anthropogenic CO2. Our objective was to investigate the stability of commercially available silica nanoparticles for a range of temperatures and brine salinities to determine if nanoparticles can be used in CO2-foam injections for EOR and underground CO2 storage in high-temperature reservoirs with high brine salinities. The experimental results demonstrated that surface-modified nanoparticles are stable and able to generate CO2 foam at elevated temperatures (60 to 120°C) and extreme brine salinities (20 wt% NaCl). We find that (1) nanofluids remain stable at extreme salinities (up to 25 wt% total dissolved solids) with the presence of both monovalent (NaCl) and divalent (CaCl2) ions; (2) both pressure gradient and incremental oil recovery during tertiary CO2-foam injections were 2 to 4 times higher with nanoparticles compared with no-foaming agent; and (3) CO2 stored during CCUS with nanoparticle-stabilized CO2 foam increased by more than 300% compared with coinjections without nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document