scholarly journals On Applications of Elements Modelled by Fractional Derivatives in Circuit Theory

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5768 ◽  
Author(s):  
Jacek Gulgowski ◽  
Tomasz P. Stefański ◽  
Damian Trofimowicz

In this paper, concepts of fractional-order (FO) derivatives are reviewed and discussed with regard to element models applied in the circuit theory. The properties of FO derivatives required for the circuit-level modeling are formulated. Potential problems related to the generalization of transmission-line equations with the use of FO derivatives are presented. It is demonstrated that some formulations of FO derivatives have limited applicability in the circuit theory. Out of the most popular approaches considered in this paper, only the Grünwald–Letnikov and Marchaud definitions (which are actually equivalent) satisfy the semigroup property and are naturally representable in the phasor domain. The generalization of this concept, i.e., the two-sided fractional Ortigueira–Machado derivative, satisfies the semigroup property, but its phasor representation is less natural. Other ideas (including the Riemann–Liouville and Caputo derivatives—with a finite or an infinite base point) seem to have limited applicability.

2016 ◽  
pp. 3973-3982
Author(s):  
V. R. Lakshmi Gorty

The fractional integrals of Bessel-type Fractional Integrals from left-sided and right-sided integrals of fractional order is established on finite and infinite interval of the real-line, half axis and real axis. The Bessel-type fractional derivatives are also established. The properties of Fractional derivatives and integrals are studied. The fractional derivatives of Bessel-type of fractional order on finite of the real-line are studied by graphical representation. Results are direct output of the computer algebra system coded from MATLAB R2011b.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 457
Author(s):  
Manuel Henriques ◽  
Duarte Valério ◽  
Paulo Gordo ◽  
Rui Melicio

Many image processing algorithms make use of derivatives. In such cases, fractional derivatives allow an extra degree of freedom, which can be used to obtain better results in applications such as edge detection. Published literature concentrates on grey-scale images; in this paper, algorithms of six fractional detectors for colour images are implemented, and their performance is illustrated. The algorithms are: Canny, Sobel, Roberts, Laplacian of Gaussian, CRONE, and fractional derivative.


Open Physics ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 850-856 ◽  
Author(s):  
Jun-Sheng Duan ◽  
Yun-Yun Xu

Abstract The steady state response of a fractional order vibration system subject to harmonic excitation was studied by using the fractional derivative operator ${}_{-\infty} D_t^\beta,$where the order β is a real number satisfying 0 ≤ β ≤ 2. We derived that the fractional derivative contributes to the viscoelasticity if 0 < β < 1, while it contributes to the viscous inertia if 1 < β < 2. Thus the fractional derivative can represent the “spring-pot” element and also the “inerterpot” element proposed in the present article. The viscosity contribution coefficient, elasticity contribution coefficient, inertia contribution coefficient, amplitude-frequency relation, phase-frequency relation, and influence of the order are discussed in detail. The results show that fractional derivatives are applicable for characterizing the viscoelasticity and viscous inertia of materials.


2020 ◽  
Vol 23 (6) ◽  
pp. 1797-1809
Author(s):  
Sergei Rogosin ◽  
Maryna Dubatovskaya

Abstract This survey paper is devoted to the description of the results by M.M. Djrbashian related to the modern theory of Fractional Calculus. M.M. Djrbashian (1918-1994) is a well-known expert in complex analysis, harmonic analysis and approximation theory. Anyway, his contributions to fractional calculus, to boundary value problems for fractional order operators, to the investigation of properties of the Queen function of Fractional Calculus (the Mittag-Leffler function), to integral transforms’ theory has to be understood on a better level. Unfortunately, most of his works are not enough popular as in that time were published in Russian. The aim of this survey is to fill in the gap in the clear recognition of M.M. Djrbashian’s results in these areas. For same purpose, we decided also to translate in English one of his basic papers [21] of 1968 (joint with A.B. Nersesian, “Fractional derivatives and the Cauchy problem for differential equations of fractional order”), and were invited by the “FCAA” editors to publish its re-edited version in this same issue of the journal.


2021 ◽  
Vol 5 (4) ◽  
pp. 212
Author(s):  
Monireh Nosrati Sahlan ◽  
Hojjat Afshari ◽  
Jehad Alzabut ◽  
Ghada Alobaidi

In this paper, fractional-order Bernoulli wavelets based on the Bernoulli polynomials are constructed and applied to evaluate the numerical solution of the general form of Caputo fractional order diffusion wave equations. The operational matrices of ordinary and fractional derivatives for Bernoulli wavelets are set via fractional Riemann–Liouville integral operator. Then, these wavelets and their operational matrices are utilized to reduce the nonlinear fractional problem to a set of algebraic equations. For solving the obtained system of equations, Galerkin and collocation spectral methods are employed. To demonstrate the validity and applicability of the presented method, we offer five significant examples, including generalized Cattaneo diffusion wave and Klein–Gordon equations. The implementation of algorithms exposes high accuracy of the presented numerical method. The advantage of having compact support and orthogonality of these family of wavelets trigger having sparse operational matrices, which reduces the computational time and CPU requirements.


Author(s):  
Grzegorz Dec ◽  

In the paper is presented review of some approaches corelated with subject of using fractional derivatives in control system theory. Popular algorithms used in the industry are presented, along with relating designing methodology. Using of fractional derivatives calculations is relatively new concept, but constantly getting increasing interest. Deliberation in recent years indicate that many scientific problems like thermodynamic or biology problems can be well considered and modeled by fractional order derivatives. On the market there is available tools that support a processes of identification and regulators designing, based on experimental data. One of such tools are toolbox CRONE for MATLAB, which contains three modules: mathematical, identifying, system control designing. That toolbox allows implementation of CRONE regulators with different level of complexity. Other tool is FOMCON, which also is a toolbox for MATLAB and it is based on already existed toolbox FOTF. FOMCON allows to identifying of control system and PIλDµ regulator designing. This article is aiming to present current state of art, discussion about existing tools and concepts correlated with fractional order derivatives and their usage in control system theory, like: gamma function, definition of fractional derivative, Laplace transform and basics of control system theory.


Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 970 ◽  
Author(s):  
Rohisha Tuladhar ◽  
Fidel Santamaria ◽  
Ivanka Stamova

We present a biological fractional n-species delayed cooperation model of Lotka-Volterra type. The considered fractional derivatives are in the Caputo sense. Impulsive control strategies are applied for several stability properties of the states, namely Mittag-Leffler stability, practical stability and stability with respect to sets. The proposed results extend the existing stability results for integer-order n−species delayed Lotka-Volterra cooperation models to the fractional-order case under impulsive control.


Sign in / Sign up

Export Citation Format

Share Document