scholarly journals Simulation of a Synchronous Planar Magnetically Levitated Motion System Based on a Real-Time Analytical Force Model

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6367
Author(s):  
Ruotong Peng ◽  
Tong Zheng ◽  
Xing Lu ◽  
Xianze Xu ◽  
Fengqiu Xu

The existing simulation method for the control of linear or planar magnetically levitated actuators always ignores the characteristics of the real physical object, which deteriorates the accuracy of the simulation. In this work, the proposed emulator for the magnetically levitated actuator is developed to consider both the force characteristics and the control algorithm. To model the real controlled object, the mathematical model for 1D (one-dimensional) and 2D (two-dimensional) magnetic arrays is derived where the yaw angle is taken into consideration using the coordinate transformation. The solution of the mathematical model is compared with the commercial BEM (boundary element method) software and the measurements from a force and torque testing setup to highlight the accuracy of the proposed mathematical model. Compared with the traditional simulation method of the motion control systems founded on the simplified system transfer function, the proposed simulation method has higher consistency and is closer to reality. The accuracy and efficiency of the proposed magnetic force model are further verified by the emulator based on the numerical force model and the testing data of the real setup.

2020 ◽  
Vol 42 (2) ◽  
pp. 68-75
Author(s):  
V.G. Demchenko ◽  
А.S. Тrubachev ◽  
A.V. Konyk

Worked out methodology of determination of the tensely-deformed state of elements of mobile heat storage of capacity type, that works in the real terms of temperature and power stress on allows to estimate influence of potential energy on resilient deformation that influences on reliability of construction and to give recommendations on planning of tank (capacities) of accumulator. For determination possibly of possible tension of construction of accumulator kinematics maximum terms were certain. As a tank of accumulator shows a soba the difficult geometrical system, the mathematical model of calculation of coefficient of polynomial and decision of task of minimization of functional was improved for determination of tension for Міzеs taking into account the real geometry of equipment. Conducted quantitative estimation of the tensely-deformed state of the union coupling, corps and bottom of thermal accumulator and the resource of work of these constructions is appraised. Thus admissible tension folds 225 МРа.


Author(s):  
Inbal Shani ◽  
Neima Brauner ◽  
Coleman B. Brosilow

IMC controller design for a process is based on choosing a mathematical model that describes the real process. The mathematical model describing such process is often not unique because the real variables of the process can vary within an interval. In such cases the performance of the control system varies, possibly substantially, as process parameters change. To limit such performance variations, we have developed an algorithm for choosing the model gains and the filter time constants of the IMC controller, to minimize the amount of interaction between outputs due to set point changes and disturbances for multivariable decoupled control systems. Some examples illustrate the algorithm.


2014 ◽  
Vol 912-914 ◽  
pp. 1727-1729
Author(s):  
Ming Yang Zhang ◽  
Li Dai ◽  
Cong Liu

The ship yaw angle and the changes affect the ships collision accidents, the ship yaw angle has strong randomness. Then this paper establishes the mathematical model to simulate the probability distribution of yaw angle,Which can very well eliminate the harm caused by the ship yaw angle.


2013 ◽  
Vol 395-396 ◽  
pp. 1227-1232
Author(s):  
Qi Guo Sun ◽  
A Li Cai ◽  
Hong Bo Lv ◽  
Zheng Hui Zhou

The mathematical model and the simulation model of the progressive distributor are established using an analytic method and AMEsim, a kind of simulation platform, respectively in this paper. The influences of the progressive structure, the viscous friction coefficient, the flow and pressure of the system and the size of throttle orifice on the performance of the progressive distributor are analyzed by the numerical simulation method. The results show that the fluctuations of the flow and pressure of the system are produced due to the overlapping motion of the three pistons, the oil-flow of the progressive distributor can be stabilized by choosing a reasonable viscous friction coefficient, and motion stability of the pistons of the progressive distributor, and the stability of the flow and pressure for the system are influenced by the size of throttle orifice. These conclusions will provide bases for the design of the oil-air lubricating system and the improvement of the structure of the progressive distributor.


2017 ◽  
Vol 23 (1) ◽  
pp. 15-20
Author(s):  
Alexandru Baboș ◽  
Alina-Mihaela Baboș

Abstract The transport problem finds its application in situations where the upper echelons must draw up an optimal plan of resources allocation for combat capabilities on objectives. In order to achieve more reliable results for the real problem, the data needed to formulate the mathematical model are extracted from an order of operations. This paper presents the optimization of military action, showing how to solve a practical problem using the transportation problem.


2012 ◽  
Vol 271-272 ◽  
pp. 958-968
Author(s):  
Young Hyu Choi ◽  
Sung Hyun Jang ◽  
Ji Han Oh

As an MLRS (Multiple Launch Rocket System) cage is moved with a uniform speed through an elevation mechanism for MRLS operated using ball screws, its stick-slip behavior can be observed by the friction in a ball screw actuator. In this study, a single-degree of freedom mathematical model of an MLRS elevation system is designed and its stick-slip behavior is analyzed using a friction force model considering the Stribeck effect. The stability of a vibration system is analyzed through deriving an equation of normalized motion for the mathematical model and the influences of mechanical parameters and friction parameters on the vibration response and stability are theoretically analyzed.


2018 ◽  
Vol 175 ◽  
pp. 03039
Author(s):  
Hu Yong ◽  
Du Yuxin ◽  
Cao Yong ◽  
Wang MaoSen ◽  
Ma Yuchi ◽  
...  

Catenary theory is recognized as the most effective suspension theory which can reflect the real situation of suspension. Catenary equation belongs to transcendental function, so there are some difficulties in calculation and application. Parabola theory, suspension curve theory and perturbation method are gradually formed as the theoretical basis for the study of suspension cables. This paper takes the 500m spherical radio telescope project as the background. The modeling method of suspension cable under multiple concentrated loads is analyzed, and the mathematical model of supporting cable after load is derived. The research in this paper provides a reference for the establishment of mathematical model of suspension cable in practice.


Author(s):  
Heng Meng ◽  
Kan Zheng ◽  
Xingzhi Xiao ◽  
Wenhe Liao

The feasibility of ultrasonic vibration-assisted grinding in dental restoration has been preliminarily proved. Improving the machining quality of zirconia ceramics by controlling cutting force is the focus of the researchers. However, the existing feed direction cutting force model for ultrasonic vibration-assisted grinding does not take the ultrasonic vibration amplitude and frequency into account. This paper presents a mathematical model for feed direction cutting force in ultrasonic vibration-assisted grinding of zirconia under the consideration of amplitude and frequency, and assuming that brittle fracture is the primary mechanism of material removal in ultrasonic vibration-assisted grinding of zirconia. The effects of amplitude and frequency on the motion, effective cutting distance, and theoretical removal of an abrasive particle have been analyzed. Besides, the number of active abrasive particles is calculated with analyzing the influences of lateral cracks and ultrasonic vibration. The variation laws of cutting force and penetration depth of an abrasive particle during ultrasonic vibration-assisted grinding have also been analyzed. Therefore, the relationship between feed direction cutting force and input variables is predicted through the developed model. Finally, pilot experiments are conducted for the mathematical model verification. Experimental results show that the trends of input variables for feed direction cutting force agree well with the trends of the developed cutting force model. Hence, the mathematical model can be applied to evaluate the feed direction cutting force in ultrasonic vibration-assisted grinding of zirconia ceramics.


Author(s):  
Jiang Dan ◽  
Songjing Li

In order to predict pressure transients accompanying cavitation and gas bubbles in hydraulic pipeline operating at low pressure, a mathematical model and a simulation method are studied. The mathematical model is based on the two basic equations of motion and continuity. The growing and collapsing of cavitation and gas bubbles accompanying pressure pulsations are modelled to calculate the volumes of cavitation and gas bubbles. The pipeline dynamic friction model is introduced. Meanwhile, a simulation method, using finite difference method and Matlab/Simulink platform, is developed to handle the prediction of pressure transients. Finally an example of fluid transients inside hydraulic pipeline is simulated after a downstream valve is closed rapidly. Simulation results show that, for a certain example pipeline, the mathematical model can handle the prediction of pressure transients accompanying cavitation and gas bubbles in low pressure pipeline. The use of combining finite difference method with Matlab/Simulink platform provides a relatively simple and effective tool to understand the nature of pressure transients accompanying cavitation and gas bubbles.


2008 ◽  
Vol 392-394 ◽  
pp. 116-120
Author(s):  
Dan Jiang ◽  
Song Jing Li ◽  
Gang Bao

In order to predict the dynamic characteristics, the piezoelectric valve-less diffuser micropump is equivalent to the hydraulic model which consists of several hydraulic components. Using finite element analysis (FEA) method, the static analysis and the natural frequency calculation of the diaphragm are carried out. The mathematical model and the simulation method using AMESim are developed. Simulation results show the pressure and flow rate characteristics of the micropump, as well as the diaphragm stiffness influence. The agreement between the simulation results and those published previously indicates that the method combining FEA with the hydraulic analogue model provides a relatively simple and effective tool to study the dynamic characteristics of micropumps.


Sign in / Sign up

Export Citation Format

Share Document