scholarly journals Experimental Study on Thermal Radiation Attenuation Using Water Mist of Twin-fluid Atomizer

2021 ◽  
Vol 35 (4) ◽  
pp. 24-32
Author(s):  
Jae Geun Jo ◽  
Chi Young Lee

In this study, the thermal radiation attenuation performance of water mist was investigated using twin-fluid atomizers. The water and air flow rates of Small atomizer were 36~105 g/min and 10~30 L/min, whereas those of Large atomizer were 37~300 g/min and 20~60 L/min, respectively. In the present experimental range, the thermal radiation attenuation of Small atomizer and Large atomizer were 6.1~11.9% and 5.2~14.6%, respectively. With the increase in water and air flow rates, the thermal radiation attenuation increased, and under similar water and air flow rate conditions, Small atomizer showed higher thermal radiation attenuation than Large atomizer. Based on the present experimental data, it was found that the air (gas) discharge area is a potentially important factor in determining the thermal radiation attenuation performance. Additionally, through the analysis of thermal radiation attenuation per unit water flow rate, it was confirmed that the twin-fluid atomizer can result in higher thermal radiation attenuation than the single-fluid atomizer under the same water flow rate condition.

Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 167
Author(s):  
Hasan Alimoradi ◽  
Madjid Soltani ◽  
Pooriya Shahali ◽  
Farshad Moradi Kashkooli ◽  
Razieh Larizadeh ◽  
...  

In this study, a numerical and empirical scheme for increasing cooling tower performance is developed by combining the particle swarm optimization (PSO) algorithm with a neural network and considering the packing’s compaction as an effective factor for higher accuracies. An experimental setup is used to analyze the effects of packing compaction on the performance. The neural network is optimized by the PSO algorithm in order to predict the precise temperature difference, efficiency, and outlet temperature, which are functions of air flow rate, water flow rate, inlet water temperature, inlet air temperature, inlet air relative humidity, and packing compaction. The effects of water flow rate, air flow rate, inlet water temperature, and packing compaction on the performance are examined. A new empirical model for the cooling tower performance and efficiency is also developed. Finally, the optimized performance conditions of the cooling tower are obtained by the presented correlations. The results reveal that cooling tower efficiency is increased by increasing the air flow rate, water flow rate, and packing compaction.


1999 ◽  
Author(s):  
Sachiyo Horiki ◽  
Masahiro Osakabe

Abstract Flow header for small multiple pipes is commonly used in boilers and heat exchangers. The system contributes to raise the heat transfer efficiency in the components. The flow distribution mechanism of the header for water has been studied and the calculation procedure for the design has been recommended for a single-phase condition. It is also recommended to avoid the bubbles in the header to obtain a uniform water flow rate to each small pipe. But in some cases, the header has to be used to distribute a flow containing bubbles. Distribution behavior of water with a gas-phase was studied experimentally in a horizontal header with four vertical pipes. In the present experimental header, it was possible to protrude the branch pipes inside of the header and the effect of protruding length on the water distribution behavior was studied. When the protruding length was 0, the water distribution rate to the first pipe rapidly increased and the rates to the others decreased with a small amount of bubbles. As the bubbles in the header were absorbed only into the first pipe, the average two-phase density in the first pipe decreased. The decreased pressure head promotes the rush of water into the first pipe such as in an airlift pump. By increasing the air flow rate in the header inlet further, the flow rate to the first pipe took a maximum and then tended to decrease. The increased air flow rate in the first pipe increased the pressure loss in the pipe and resulted in a reduction in the water flow rate. The more important and serious behavior could be seen in the other pipes where the water flow rate decreased to 1/5 of the uniform distribution rate. By increasing the protruding length, the non-uniform distribution of water was suppressed because the gas-phase entered not only the first pipe but also the others. The best result was obtained when the four branch pipes were protruded into the center of header.


Author(s):  
Akinori Furukawa ◽  
Satoshi Ohshita ◽  
Kusuo Okuma ◽  
Satoshi Watanabe

A centrifugal impeller, the pumping action of which could be highly kept even at an air-water two-phase flow condition of inlet void fraction more than 30% in the region of relatively high water flow rate, has been developed. In the present paper, the design concept of two-phase flow impeller is described, at first, with experimental results. The short bladed forward impeller with high outlet blade angle was decided to keep theoretical head higher even in two-phase flow condition and to disperse the air accumulating region on the suction blade surface by the water jet flow coming from the pressure side. Furthermore, the tandem arrangement of outer and inner rotating cascades with the same blade numbers was adopted to suppress the rotating stall phenomena appearing in the case of a single stage of outer cascade. It should be noted that these results were obtained with operating a boost pump installed upstream of mixing section of air and water, that is not an actual operation of two-phase flow pump. Secondly, the operating characteristics of this two-phase flow pump with change of air flow rate were investigated experimentally without operating the boost pump. As the trajectory of operating point with increasing air flow rate appears along the resistance curve of piping system, the impossibility of pumping occurs at lower air flow rate even though pump head takes a positive value at high air flow rate with increasing water flow rate. It is recognized that it is necessary to improve two-phase flow head characteristic curves in the region of low water flow rate to operate in wider two-phase flow conditions.


2021 ◽  
Vol 37 (1) ◽  
pp. 105-112
Author(s):  
Komgrit Leksakul ◽  
Norrapon Vichiansan ◽  
Pisit Kaewkham ◽  
Boonprathan Hattaphasu ◽  
Dheerawan Boonyawan

HighlightsAbstract. In this study, we developed an effective methodology to determine the suitable plasma-based generating system of reactive nitrogen species (RNS) targeting hydroponic farming systems using a full factorial design with center points and blocking. A 2k with 2 blockings plus 2 center points design was employed in the experiment to develop an efficient analytical model for nitrogen solution concentration and hydroponic vegetable growth incorporating the plasma discharge system process parameters, including water flow rate, plasma discharge duration, and air flow rate. This study designed and constructed an air plasma discharge system with DC power supply. Thereafter, nitrogen solution was generated under a parameter conditions setting by the design of experiments (DOE) method. RNS solution, which contained nitrate (NO3-) and nitrite (NO2-) ions with P and K added, was passed through the hydroponic system for growing green oak lettuce. The most promising plasma-generated nitrogen solution parameters were obtained for this set up at a water flow rate of 6 L/min, discharge duration of 60 min, and activated air flow rate of 60 mL/min. Keywords: Nitrate, Nitrite, Plasma discharge, Reactive nitrogen species.


Author(s):  
Feras Z. Batarseh ◽  
Ilia V. Roisman ◽  
Cam Tropea

We present an experimental investigation of a spray generated by an airblast atomizer. Experiments have been performed in a pressure chamber equipped by transparent windows allowing an optical access to the spray. Several techniques of spray investigation have been applied: spray visualization using the high-speed video system, spray visualization and instantaneous velocity measurements using the PIV technique, spray velocimetry and sizing using the IPI and phase Doppler instruments. Phase Doppler instrument has been used to characterize the droplets in the spray: their diameter, two components of the velocity vector. Also the integral parameters of the spray, such as the local volume flux density, have been characterized. We conduct a parametric study of the effect of the ambient pressure, the air flow rate and the water flow rate on an atomized spray. Measurements at different radial locations in the spray and in two planes were performed. The measurements in these two planes allow one to determine the distributions of all the three components of the average drop velocity vector: axial, radial and azimuthal. PDA measurements show that atomized spray is sensitive to any change in the studied parameters. For example, increasing air flow rate from 20 SCMH to 45 SCMH and keeping same water flow rate and pressure, leads to an increase in all velocity components and also to a change in droplets diameters. On the other hand, keeping constant pressure and air flow rate and increasing water flow rate from 0.7 to 1.4 l/hr, leads to an increase in water droplets sizes and the axial velocity component, whereas the other velocity components show a non uniform change. Moreover, increasing the ambient pressure leads to the growth of the spray velocity and drops diameters.


Author(s):  
Muthu Selvan ◽  
Muralidhara Suryanarayana Rao ◽  
Indu Kharb ◽  
Sundararajan Thirumalachari ◽  
Vinod Kumar Vyas ◽  
...  

An experimental study has been conducted to investigate the interaction between the conical spray produced by simplex atomizer and the swirling flow from an axial swirler. This work has been carried out in an unconfined ambience at isothermal conditions, using water. Malvern spray analyzer with a three dimensional traverse is used to characterize the swirling flow and spray interactions at various axial and radial locations. Images of spray at different conditions of air and water mass flow rates have been analyzed. Increasing the air mass flow through swirler at constant water flow rate, changes the spray structure significantly. These structural changes are sudden and highly dependent on the initial conditions of the spray. At smaller air flow rates, single-mode droplet size distribution at mid-plane changes into a bi-modal distribution at an air flow rate of about 35 kg/hr, with higher contribution of larger droplets. With further increase in air flow rate (90, 110 and 130 kg/hr), the bi-modal size distribution is maintained but with a larger volumetric fraction of small droplets. At different axial distances, the droplet size distributions are similar (single mode and bimodal distributions depending on air flow rate). But volume percentage of larger droplets is less compared to those of smaller droplets, at larger axial distance. At outer radial locations of the spray, volume percentage of larger droplets reduces and that of smaller droplets increases significantly, due to secondary droplet breakup. The interaction between the swirl and spray causes droplets to move radially outwards, resulting in droplet break-up by impact on the dome. Cases with higher air to water flow ratios exhibit significant changes in drop size distribution due to such swirl-spray interactions.


2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Talib O Ahmadu ◽  
Hamisu A Dandajeh

Cooling towers are devices used to dissipate waste thermal heat to the ambient environment. Appropriate cooling water and air flow rates are necessary to ensure optimum cooling power and cooling efficiency. Also, a simple design is required for cost effectiveness and minimal maintenance issues. This paper experimentally evaluates the cooling power, cooling efficiency, as well as the optimum water to air flow ratio in a spray type induced draft wet cooling tower. The cooling tower, 6 kW cooling capacity, was developed to operate without packings. The experiments were conducted for three different air flow rates and six different water flow rates. Four different inlet water temperatures of 35, 40, 45 and 50 oC were used. The temperature range is a typical range for inlet water temperature to the cooling tower for an absorption cooling system. For each of the inlet water temperatures, air and water flow rates were varied. The effects of this variation on cooling power and cooling efficiency were studied. Effect of varying water to air flow ratio on cooling power and cooling efficiency were studied. Results showed that the cooling power increased with increasing water flow rate, while the cooling efficiency decreased with increasing water flow rate. Decreasing the air flow rate was seen to cause a decrease in both cooling power and cooling efficiency. Maximum cooling power and cooling efficiency of 5.33 kW and 63% respectively were obtained. An optimum water to air flow ratio of 1.6 was obtained. The cooling tower was seen to have operated satisfactorily without packings. Keywords— cooling tower, cooling power, cooling efficiency, flow ratio, thermal energy


Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 4
Author(s):  
Dillon Alexander Wilson ◽  
Kul Pun ◽  
Poo Balan Ganesan ◽  
Faik Hamad

Microbubble generators are of considerable importance to a range of scientific fields from use in aquaculture and engineering to medical applications. This is due to the fact the amount of sea life in the water is proportional to the amount of oxygen in it. In this paper, experimental measurements and computational Fluid Dynamics (CFD) simulation are performed for three water flow rates and three with three different air flow rates. The experimental data presented in the paper are used to validate the CFD model. Then, the CFD model is used to study the effect of diverging angle and throat length/throat diameter ratio on the size of the microbubble produced by the Venturi-type microbubble generator. The experimental results showed that increasing water flow rate and reducing the air flow rate produces smaller microbubbles. The prediction from the CFD results indicated that throat length/throat diameter ratio and diffuser divergent angle have a small effect on bubble diameter distribution and average bubble diameter for the range of the throat water velocities used in this study.


Author(s):  
Ari Kettunen ◽  
Timo Hyppa¨nen ◽  
Ari-Pekka Kirkinen ◽  
Esa Maikkola

The main objective of this study was to investigate the load change capability and effect of the individual control variables, such as fuel, primary air and secondary air flow rates, on the dynamics of large-scale CFB boilers. The dynamics of the CFB process were examined by dynamic process tests and by simulation studies. A multi-faceted set of transient process tests were performed at a commercial 235 MWe CFB unit. Fuel reactivity and interaction between gas flow rates, solid concentration profiles and heat transfer were studied by step changes of the following controllable variables: fuel feed rate, primary air flow rate, secondary air flow rate and primary to secondary air flow ratio. Load change performance was tested using two different types of tests: open and closed loop load changes. A tailored dynamic simulator for the CFB boiler was built and fine-tuned by determining the model parameters and by validating the models of each process component against measured process data of the transient test program. The know-how about the boiler dynamics obtained from the model analysis and the developed CFB simulator were utilized in designing the control systems of three new 262 MWe CFB units, which are now under construction. Further, the simulator was applied for the control system development and transient analysis of the supercritical OTU CFB boiler.


Author(s):  
D. A. Kamble ◽  
B. S. Gawali

Micro-convection is a strategic area in transport phenomena, since it is the basis for a wide range of miniaturized high-performance heat transfer applications. Surface area is one of the important parameter for high flux heat transfer in microchannel performance. This experimental study deals with heat transfer using triangular microchannel having hydraulic diameters of 321μm and 289μm. Experimentation is carried out for triangular microchannel set for different heat input and flow rate condition. Triangular microchannel are manufactured with EDM technology. Testing of microchannel under laminar flow is considered with different tip angle, spacing, and length of microchannels. The different microchannels made up of copper material with 29 microchannel each having three different sets of length of 50 mm, 70 mm and 90 mm respectively. Tip angles for triangular microchannel is varied 50 ° and 60 ° with width of 30 mm each respectively are analyzed numerically. Spacing between triangular microchannels is also varied and 300μm and 400μm are considered for the analysis. Water flow rate is considered laminar flow. The flow rate of water is varied from 0.0167 kg/sec to 0.167 kg/sce to carry away heat. It is observed that as hydraulic diameters increase the heat transfer coefficient decreases. As the heat input to microchannel increases from 10 Watt to 100 Watt the temperature drop across varies from 2° C to 22°C as water flow rate increases. The numerical analysis is done using computer C programming. Experimental result differ from theoretical for temperature drop with variation of 2°C to 5°C. It is also observed that in all triangular microchannels its geometry i.e. tip angle and hydraulic diameter are dominant parameters which influences on rate of heat transfer. With increasing channel depth, increases flow passage area therefore enhances heat transfer sufficiently. From experimentation a Nu number correlation is proposed with considering tip angle, length, spacing of microchannel and other related parameters.


Sign in / Sign up

Export Citation Format

Share Document