scholarly journals Numerical Study on Sectional Loads and Structural Optimization of an Elastic Semi-Submersible Floating Platform

Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 182
Author(s):  
Yuliang Liu ◽  
Takeshi Ishihara

This study investigates the sectional loads on an elastic semi-submersible platform for a 2 MW FOWT (floating offshore wind turbine) used in the Fukushima demonstration project. A water tank test is firstly carried out with an elastic model to study the dynamic responses and sectional loads of the platform in regular and irregular waves. Numerical simulations are then performed using multiple hydrodynamic bodies connected by elastic beams. The dynamic responses of the elastic model are compared to those of a rigid model to clarify the influence of the structural stiffness on the platform motion and mooring tension. The predicted sectional loads on the deck, brace and pontoon by the proposed nonlinear hydrodynamic models show good agreement with the experimental data obtained from the water tank test and a simplified formula is proposed to evaluate the distribution of the moments on the platform. Finally, the structural optimization of the elastic semi-submersible platform is conducted. The sectional moments and fatigue loadings on the pontoons are significantly reduced using the strut between the pontoons since the horizontal wave loads on the side column are dominant and the vertical wave loads acting on the platform are relatively small due to the deep draft.

Author(s):  
Lin Li ◽  
Zhen Gao ◽  
Torgeir Moan

This study addresses numerical modeling and time-domain simulations of the lowering operation for installation of an offshore wind turbine monopile (MP) with a diameter of 5.7 m and examines the nonstationary dynamic responses of the lifting system in irregular waves. Due to the time-varying properties of the system and the resulting nonstationary dynamic responses, numerical simulation of the entire lowering process is challenging to model. For slender structures, strip theory is usually applied to calculate the excitation forces based on Morison's formula with changing draft. However, this method neglects the potential damping of the structure and may overestimate the responses even in relatively long waves. Correct damping is particularly important for the resonance motions of the lifting system. On the other hand, although the traditional panel method takes care of the diffraction and radiation, it is based on steady-state condition and is not valid in the nonstationary situation, as in this case in which the monopile is lowered continuously. Therefore, this paper has two objectives. The first objective is to examine the importance of the diffraction and radiation of the monopile in the current lifting model. The second objective is to develop a new approach to address this behavior more accurately. Based on the strip theory and Morison's formula, the proposed method accounts for the radiation damping of the structure during the lowering process in the time-domain. Comparative studies between different methods are presented, and the differences in response using two types of installation vessel in the numerical model are also investigated.


Author(s):  
Wenhua Wang ◽  
Zhen Gao ◽  
Xin Li ◽  
Torgeir Moan ◽  
Bin Wang

In the last decade the wind energy industry has developed rapidly in China, especially offshore. For a water depth less than 20m, monopile and multi-pile substructures (tripod, pentapod) are applied widely in offshore wind farms. Some wind farms in China are located in high seismicity regions, thus, the earthquake load may become the dominant load for offshore wind turbines. This paper deals with the seismic behavior of an offshore wind turbine (OWT) consisting of the NREL 5MW baseline wind turbine, a pentapod substructure and a pile foundation of a real offshore wind turbine in China. A test model of the OWT is designed based on the hydro-elastic similarity. Test cases of different load combinations are performed with the environmental conditions generated by the Joint Earthquake, Wave and Current Simulation System and the Simple Wind Field Generation System at Dalian University of Technology, China, in order to investigate the structural dynamic responses under different load conditions. In the tests, a circular disk is used to model the rotor-nacelle system, and a force gauge is fixed at the center of the disk to measure the wind forces during the tests. A series of accelerometers are arranged along the model tower and the pentapod piles, and strain gauges glued on the substructure members are intended to measure the structural dynamic responses. A finite element model of the complete wind turbine is also established in order to compare the theoretical results with the test data. The hydro-elastic similarity is validated based on the comparison of the measured dynamic characteristics and the results of the prototype modal analysis. The numerical results agree well with the experimental data. Based on the comparisons of the results, the effect of the wind and sea loads on the structural responses subjected to seismic is demonstrated, especially the influence on the global response of the structure. It is seen that the effect of the combined seismic, wind, wave and current load conditions can not be simply superimposed. Hence the interaction effect in the seismic analysis should be considered when the wind, wave and current loads have a non-negligible effect.


Author(s):  
Yougang Tang ◽  
Jun Hu ◽  
Liqin Liu

The wind resources for ocean power generation are mostly distributed in sea areas with the distance of 5–50km from coastline, whose water depth are generally over 20m. To improve ocean power output and economic benefit of offshore wind farm, it is necessary to choose floating foundation for offshore wind turbine. According to the basic data of a 600kW wind turbine with a horizontal shaft, the tower, semi-submersible foundation and mooring system are designed in the 60-meter-deep sea area. Precise finite element models of the floating wind turbine system are established, including mooring lines, floating foundation, tower and wind turbine. Dynamic responses for the floating foundation of offshore wind turbine are investigated under wave load in frequency domain.


2021 ◽  
Author(s):  
Saika Iwamatsu ◽  
Yasunori Nihei ◽  
Kazuhiro Iijima ◽  
Tomoki Ikoma ◽  
Tomoki Komori

Abstract In this study, a series of dedicated water tank tests were conducted in wind and waves to investigate the stability performance and turning motion of Floating Offshore Wind Turbine (FOWT) equipped with two vertical axis wind turbines (VAWT). The FOWT targeted in this study is called Multi-connection VAWT, which is a new type of FOWT moored by Single-Point-Mooring (SPM) system. We designed and manufactured two types of semi-submersible floating bodies. One is a type in which VAWTs are mounted in two places of a right-angled isosceles triangle (Type-A) on a single floater, and the other is two independent units equipped with VAWTs on two separate floaters centered on a moored body. This is a type in which two semi-submersible floating bodies are lined up in a straight line (Type-B). The experimental conditions were determined by scaling down to 1/100 using Froude’s scaling law based on a wind thrust load of 320 kN (rated wind speed of 12 m/s) assuming an actual machine. In the free yawing test in waves, Type-A turned downwards, while Type-B was barely affected by the waves. Furthermore, in the free yawing test in wind, both Type-A and Type-B turned leeward and stabilized at a final point where the wind load was balanced.


Author(s):  
G. K. V. Ramachandran ◽  
H. Bredmose ◽  
J. N. Sørensen ◽  
J. J. Jensen

A dynamic model for a tension-leg platform (TLP) floating offshore wind turbine is proposed. The model includes three-dimensional wind and wave loads and the associated structural response. The total system is formulated using 17 degrees of freedom (DOF), 6 for the platform motions and 11 for the wind turbine. Three-dimensional hydrodynamic loads have been formulated using a frequency- and direction-dependent spectrum. While wave loads are computed from the wave kinematics using Morison’s equation, aerodynamic loads are modelled by means of unsteady Blade-Element-Momentum (BEM) theory, including Glauert correction for high values of axial induction factor, dynamic stall, dynamic wake and dynamic yaw. The aerodynamic model takes into account the wind shear and turbulence effects. For a representative geographic location, platform responses are obtained for a set of wind and wave climatic conditions. The platform responses show an influence from the aerodynamic loads, most clearly through a quasi-steady mean surge and pitch response associated with the mean wind. Further, the aerodynamic loads show an influence from the platform motion through more fluctuating rotor loads, which is a consequence of the wave-induced rotor dynamics. In the absence of a controller scheme for the wind turbine, the rotor torque fluctuates considerably, which induces a growing roll response especially when the wind turbine is operated nearly at the rated wind speed. This can be eliminated either by appropriately adjusting the controller so as to regulate the torque or by optimizing the floater or tendon dimensions, thereby limiting the roll motion. Loads and coupled responses are predicted for a set of load cases with different wave headings. Based on the results, critical load cases are identified and discussed. As a next step (which is not presented here), the dynamic model for the substructure is therefore being coupled to an advanced aero-elastic code Flex5, Øye (1996), which has a higher number of DOFs and a controller module.


Author(s):  
Chinsu Mereena Joy ◽  
Anitha Joseph ◽  
Lalu Mangal

Demand for renewable energy sources is rapidly increasing since they are able to replace depleting fossil fuels and their capacity to act as a carbon neutral energy source. A substantial amount of such clean, renewable and reliable energy potential exists in offshore winds. The major engineering challenge in establishing an offshore wind energy facility is the design of a reliable and financially viable offshore support for the wind turbine tower. An economically feasible support for an offshore wind turbine is a compliant platform since it moves with wave forces and offer less resistance to them. Amongst the several compliant type offshore structures, articulated type is an innovative one. It is flexibly linked to the seafloor and can move along with the waves and restoring is achieved by large buoyancy force. This study focuses on the experimental investigations on the dynamic response of a three-legged articulated structure supporting a 5MW wind turbine. The experimental investigations are done on a 1: 60 scaled model in a 4m wide wave flume at the Department of Ocean Engineering, Indian Institute of Technology, Madras. The tests were conducted for regular waves of various wave periods and wave heights and for various orientations of the platform. The dynamic responses are presented in the form of Response Amplitude Operators (RAO). The study results revealed that the proposed articulated structure is technically feasible in supporting an offshore wind turbine because the natural frequencies are away from ocean wave frequencies and the RAOs obtained are relatively small.


2021 ◽  
Vol 11 (24) ◽  
pp. 11665
Author(s):  
Shi Liu ◽  
Yi Yang ◽  
Chao Wang ◽  
Yuangang Tu

Spar-type floating offshore wind turbines commonly vibrate excessively when under the coupling impact of wind and wave. The wind turbine vibration can be controlled by developing its mooring system. Thus, this study proposes a novel mooring system for the spar-type floating offshore wind turbine. The proposed mooring system has six mooring lines, which are divided into three groups, with two mooring lines in the same group being connected to the same fairlead. Subsequently, the effects of the included angle between the two mooring lines on the mooring-system’s performance are investigated. Then, these six mooring lines are connected to six independent fairleads for comparison. FAST is utilized to calculate wind turbine dynamic response. Wind turbine surge, pitch, and yaw movements are presented and analyzed in time and frequency domains to quantitatively evaluate the performances of the proposed mooring systems. Compared with the mooring system with six fairleads, the mooring system with three fairleads performed better. When the included angle was 40°, surge, pitch, and yaw movement amplitudes of the wind turbine reduced by 39.51%, 6.8%, and 12.34%, respectively, when under regular waves; they reduced by 56.08%, 25.00%, and 47.5%, respectively, when under irregular waves. Thus, the mooring system with three fairleads and 40° included angle is recommended.


Sign in / Sign up

Export Citation Format

Share Document