scholarly journals Attitudes on Carbon Capture and Storage (CCS) as a Mitigation Technology within the UNFCCC

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 629
Author(s):  
Katherine Romanak ◽  
Mathias Fridahl ◽  
Tim Dixon

Carbon Capture and Storage (CCS) is a technology for mitigating emissions from large point-source industries. In addition to the primary role of reducing carbon dioxide (CO2) in the atmosphere, CCS forms the basis for two large-scale negative emissions technologies by coupling geologic CO2 storage with bioenergy (BECCS) and direct air carbon capture (DACCS). Despite its inclusion within the United Nations Framework Convention on Climate Change (UNFCCC), CCS has been largely unsupported by UNFCCC delegates because of its association with fossil fuels. We evaluate data from surveys given since 2015 to UNFCCC delegates at the Conference of the Parties (COPs) to ascertain how attitudes about bioenergy, BECCS, and CCS may be changing within the UNFCCC. The results show a positive change in attitudes over time for both fossil CCS and BECCS. Using a unique data analysis method, we ascertain that, in some instances, popularity of BECCS increased due to an increased acceptance of CCS despite lower opinions of bioenergy. Business and research NGOs have the most positive views of CCS, and environmental NGOs the most negative views. Delegates that attend CCS side-events have more positive attitudes towards CCS than non-attendees. Developing countries have a larger need and a greater appetite for information on BECCS than developed countries, but a need for information exists in both.

2020 ◽  
Vol 24 (9) ◽  
pp. 1671-1686
Author(s):  
O.S. Bull ◽  
I. Bull ◽  
G.K. Amadi

Global concern about climate change caused by anthropogenic activities, such as the large scale use of fossil fuels as major energy sources for domestic and industrial application, which on combustion give off carbon dioxide (CO2) into the atmosphere. Deforestation is also reducing one of the natural sinks for CO2. These anthropogenic activities have led to an increase in the concentration of CO2 in the atmosphere and have thus resulted in the warming of the earth’s surface (Global Warming), droughts, melting of ice caps, and loss of coral reefs. Carbon capture and storage (CCS) and other variety of emerging technologies and methods have been developed. These technologies and methods are reviewed in this article. Keywords: Global warming, carbon capture and storage, amine-based absorbents, Metal-Organic Frameworks


2019 ◽  
Vol 8 (6) ◽  
pp. e12861023 ◽  
Author(s):  
Pedro Junior Zucatelli ◽  
Ana Paula Meneguelo ◽  
Gisele de Lorena Diniz Chaves ◽  
Gisele de Lorena Diniz Chaves ◽  
Marielce de Cassia Ribeiro Tosta

The integrity of natural systems is already at risk because of climate change caused by the intense emissions of greenhouse gases in the atmosphere. The goal of geological carbon sequestration is to capture, transport and store CO2 in appropriate geological formations. In this review, we address the geological environments conducive to the application of CCS projects (Carbon Capture and Storage), the phases that make up these projects, and their associated investment and operating costs. Furthermore it is presented the calculations of the estimated financial profitability of different types of projects in Brazil. Using mathematical models, it can be concluded that the Roncador field presents higher gross revenue when the amount of extra oil that can be retrieved is 9.3% (US$ 48.55 billions approximately in 2018). Additional calculations show that the Paraná saline aquifer has the highest gross revenue (US$ 6.90 trillions in 2018) when compared to the Solimões (US$ 3.76 trillions approximately in 2018) and Santos saline aquifers (US$ 2.21 trillions approximately in 2018) if a CCS project were to be employed. Therefore, the proposed Carbon Capture and Storage method in this study is an important scientific contribution for reliable large-scale CO2 storage in Brazil.


Author(s):  
Naimish Agarwal

Abstract: More than ever, the fate of anthropogenic CO2 emissions is in our hands. Since the advent of industrialization, there has been an increase in the use of fossil fuels to fulfil rising energy demands. The usage of such fuels results in the release of carbon dioxide (CO2) and other greenhouse gases, which result in increased temperature. Such warming is extremely harmful to life on Earth. The development of technology to counter the climate change and spreading it for widespread adoptions. We need to establish a framework to provide overarching guidance for the well-functioning of technology and mechanism development of Carbon Capture and Storage. Carbon capture and storage (CCS) is widely regarded as a critical approach for achieving the desired CO2 emission reduction. Various elements of CCS, such as state-of-the-art technology for CO2 collection, separation, transport, storage, politics, opportunities, and innovations, are examined and explored in this paper. Carbon capture and storage is the process of capturing and storing carbon dioxide (CO2) before it is discharged into the environment (CCS). The technology can capture high amounts of CO2 produced by fossil fuel combustion in power plants and industrial processes. CO2 is compressed and transferred by pipeline, ship, or road tanker once it has been captured. CO2 can then be piped underground, usually to depths of 1km or more, and stored in depleted oil and gas reservoirs, coalbeds, or deep saline aquifers, depending on the geology. CO2 could also be used to produce commercially marketable products. With the goal of keeping world average temperatures below 1.5°C (2.7°F) and preventing global average temperature rises of more than 2°C (3.6°F) over pre-industrial levels, CCS model should be our priority to be implemented with the proper economical map


2013 ◽  
Vol 4 (2) ◽  
pp. 237-251 ◽  
Author(s):  
K. Becker ◽  
V. Wulfmeyer ◽  
T. Berger ◽  
J. Gebel ◽  
W. Münch

Abstract. We present a comprehensive, interdisciplinary project which demonstrates that large-scale plantations of Jatropha curcas – if established in hot, dry coastal areas around the world – could capture 17–25 t of carbon dioxide per hectare per year from the atmosphere (over a 20 yr period). Based on recent farming results it is confirmed that the Jatropha curcas plant is well adapted to harsh environments and is capable of growing alone or in combination with other tree and shrub species with minimal irrigation in hot deserts where rain occurs only sporadically. Our investigations indicate that there is sufficient unused and marginal land for the widespread cultivation of Jatropha curcas to have a significant impact on atmospheric CO2 levels at least for several decades. In a system in which desalinated seawater is used for irrigation and for delivery of mineral nutrients, the sequestration costs were estimated to range from 42–63 EUR per tonne CO2. This result makes carbon farming a technology that is competitive with carbon capture and storage (CCS). In addition, high-resolution simulations using an advanced land-surface–atmosphere model indicate that a 10 000 km2 plantation could produce a reduction in mean surface temperature and an onset or increase in rain and dew fall at a regional level. In such areas, plant growth and CO2 storage could continue until permanent woodland or forest had been established. In other areas, salinization of the soil may limit plant growth to 2–3 decades whereupon irrigation could be ceased and the captured carbon stored as woody biomass.


KnE Energy ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 13
Author(s):  
Aisyah Kusuma ◽  
Eko Widianto ◽  
Rachmat Sule ◽  
Wawan Gunawan A. Kadir ◽  
Mega S. Gemilang

<p>Further to Kyoto Protocol, again in 2009 G-20 Pittsburg Summit, Indonesia delivered the commitment on reducing 26% on its emission level. Moreover, as non-annex 1 country, Indonesia shows strong and bold commitment in supporting reduction on increased concentrations of greenhouse gases produced by human activities such as burning the fossil fuels and deforestation. From the energy sector, Carbon Capture and Storage (CCS) is known as a process of capturing waste carbon dioxide (CO2) from large point sources and depositing it normally at an underground geological formation. CCS becomes now as one of the possible supports to the country commitment. In Indonesia, the potential of CCS applications could be conducted in the gas fields with high content of CO2 and in almost depleted oil fields (by applying CO2-Enchanced Oil Recovery (EOR) The CCS approach could also be conducted in order to increase hydrocarbon production, and at the same time the produced CO2 will be injected and storage it back to the earth. Thus, CCS is a mitigation process in enhancing carbon emission reduction caused by green house effect from production hydrocarbon fields.</p><p>This paper will show a proposed milestone on CCS Research roadmap, as steps to be taken in reaching the objective. The milestone consists of the study for identifying potential CO2 sources, evaluating CO2 storage sites, detail study related to CO2 storage selection, CO2 injection, and CO2 injection monitoring. Through these five steps, one can expect to be able to comprehend road map of CCS Research. Through this research milestone, applications of CCS should also be conducted based on the regulatory coverage milestone. From this paper, it is hoped that one can understand the upstream activities starting with research milestone to the very end downstream activities regarding to the regulation coverage bound. </p><p><em><strong>Keywords</strong></em>: CCS, reduction of carbon emission, regulation umbrella </p>


Author(s):  
Kartika Srivastava

Abstract: Carbon dioxide capture and sequestration (CCS) is the capture and storage of carbon dioxide (CO2) that is emitted to the atmosphere as a result of combustion process. Presently majority of efforts focus on the removal of carbon dioxide directly from industrial plants and thereby storing it in geological reservoirs. The principle is to achieve a carbon neutral budget if not carbon negative, and thereby mitigate global climate change. Currently, fossil fuels are the predominant source of the global energy generation and the trend will continue for the rest of the century. Fossil fuels supply over 63% of all primary energy; the rest is contributed by nuclear, hydro-electricity and renewable energy. Although research and investments are being targeted to increase the percentage of renewable energy and foster conservation and efficiency improvements of fossil-fuel usage, development of CCS technology is the most important tool likely to play a pivotal role in addressing this crisis. [1] Keywords: Carbon Capture and Storage, Carbon dioxide, fossil fuels, Greenhouse gases


2015 ◽  
Vol 12 (12) ◽  
pp. 8909-8937
Author(s):  
N. Hicks ◽  
U. Vik ◽  
P. Taylor ◽  
E. Ladoukakis ◽  
J. Park ◽  
...  

Abstract. Carbon capture and storage (CCS) is a developing technology that seeks to mitigate against the impact of increasing anthropogenic carbon dioxide (CO2) production by capturing CO2 from large point source emitters. After capture the CO2 is compressed and transported to a reservoir where it is stored for geological time scales. Potential leakages from CCS projects, where stored CO2 migrates through the overlaying sediments, are likely to have severe implications on benthic and marine ecosystems. Nonetheless, prokaryotic response to elevated CO2 concentrations has been suggested as one of the first detectable warnings if a CO2 leakage should occur. Applying properties of prokaryotic communities (i.e. community composition and metabolic status) as a novel CO2 monitoring application is highly reliable within a multidisciplinary framework, where deviations from the baseline can easily be identified. In this paper we review current knowledge about the impact of CO2 leakages on marine sediments from a multidisciplinary-based monitoring perspective. We focus on aspects from the fields of biology, geophysics, and chemistry, and discuss a case study example. We argue the importance of an integrative multidisciplinary approach, incorporating biogeochemistry, geophysics, microbial ecology and modelling, with a particular emphasis on metagenomic techniques and novel bioinformatics, for future CCS monitoring. Within this framework, we consider that an effective CCS monitoring programme will ensure that large-scale leakages with potentially devastating effects for the overlaying ecosystem are avoided. Furthermore, the multidisciplinary approach suggested here for CCS monitoring is generic, and can be adapted to other systems of interest.


2021 ◽  
Author(s):  
Tom Terlouw ◽  
Karin Treyer ◽  
christian bauer ◽  
Marco Mazzotti

Prospective energy scenarios usually rely on Carbon Dioxide Removal (CDR) technologies to achieve the climate goals of the Paris Agreement. CDR technologies aim at removing CO2 from the atmosphere in a permanent way. However, the implementation of CDR technologies typically comes along with unintended environmental side-effects such as land transformation or water consumption. These need to be quantified before large-scale implementation of any CDR option by means of Life Cycle Assessment (LCA). Direct Air Carbon Capture and Storage (DACCS) is considered to be among the CDR technologies closest to large-scale implementation, since first pilot and demonstration units have been installed and interactions with the environment are less complex than for biomass related CDR options. However, only very few LCA studies - with limited scope - have been conducted so far to determine the overall life-cycle environmental performance of DACCS. We provide a comprehensive LCA of different low temperature DACCS configurations - pertaining to solid sorbent-based technology - including a global and prospective analysis.


Sign in / Sign up

Export Citation Format

Share Document