scholarly journals Simulation Analysis of CO2-EOR Process and Feasibility of CO2 Storage during EOR

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1154
Author(s):  
Maja Arnaut ◽  
Domagoj Vulin ◽  
Gabriela José García Lamberg ◽  
Lucija Jukić

In this study, oil production and retention were observed and compared in 72 reservoir simulation cases, after which an economic analysis for various CO2 and oil prices was performed. Reservoir simulation cases comprise different combinations of water alternating gas (WAG) ratios, permeabilities, and well distances. These models were set at three different depths; thus different pressure and temperature conditions, to see the impact of miscibility on oil production and CO2 sequestration. Those reservoir conditions affect oil production and CO2 retention differently. The retention trend dependence on depth was not monotonic—optimal retention relative to the amount of injected CO2 could be achieved at middle depths and mediocre permeability as well. Results reflecting different reservoir conditions and injection strategies are shown, and analysis including the utilization factor and the net present value was conducted to examine the feasibility of different scenarios. The analysis presented in this paper can serve as a guideline for multiparameter analysis and optimization of CO2-enhanced oil recovery (EOR) with a WAG injection strategy.

2019 ◽  
Vol 6 (6) ◽  
pp. 181902 ◽  
Author(s):  
Junchen Lv ◽  
Yuan Chi ◽  
Changzhong Zhao ◽  
Yi Zhang ◽  
Hailin Mu

Reliable measurement of the CO 2 diffusion coefficient in consolidated oil-saturated porous media is critical for the design and performance of CO 2 -enhanced oil recovery (EOR) and carbon capture and storage (CCS) projects. A thorough experimental investigation of the supercritical CO 2 diffusion in n -decane-saturated Berea cores with permeabilities of 50 and 100 mD was conducted in this study at elevated pressure (10–25 MPa) and temperature (333.15–373.15 K), which simulated actual reservoir conditions. The supercritical CO 2 diffusion coefficients in the Berea cores were calculated by a model appropriate for diffusion in porous media based on Fick's Law. The results show that the supercritical CO 2 diffusion coefficient increases as the pressure, temperature and permeability increase. The supercritical CO 2 diffusion coefficient first increases slowly at 10 MPa and then grows significantly with increasing pressure. The impact of the pressure decreases at elevated temperature. The effect of permeability remains steady despite the temperature change during the experiments. The effect of gas state and porous media on the supercritical CO 2 diffusion coefficient was further discussed by comparing the results of this study with previous study. Based on the experimental results, an empirical correlation for supercritical CO 2 diffusion coefficient in n -decane-saturated porous media was developed. The experimental results contribute to the study of supercritical CO 2 diffusion in compact porous media.


2014 ◽  
Vol 17 (03) ◽  
pp. 304-313 ◽  
Author(s):  
A.M.. M. Shehata ◽  
M.B.. B. Alotaibi ◽  
H.A.. A. Nasr-El-Din

Summary Waterflooding has been used for decades as a secondary oil-recovery mode to support oil-reservoir pressure and to drive oil into producing wells. Recently, the tuning of the salinity of the injected water in sandstone reservoirs was used to enhance oil recovery at different injection modes. Several possible low-salinity-waterflooding mechanisms in sandstone formations were studied. Also, modified seawater was tested in chalk reservoirs as a tertiary recovery mode and consequently reduced the residual oil saturation (ROS). In carbonate formations, the effect of the ionic strength of the injected brine on oil recovery has remained questionable. In this paper, coreflood studies were conducted on Indiana limestone rock samples at 195°F. The main objective of this study was to investigate the impact of the salinity of the injected brine on the oil recovery during secondary and tertiary recovery modes. Various brines were tested including deionized water, shallow-aquifer water, seawater, and as diluted seawater. Also, ions (Na+, Ca2+, Mg2+, and SO42−) were particularly excluded from seawater to determine their individual impact on fluid/rock interactions and hence on oil recovery. Oil recovery, pressure drop across the core, and core-effluent samples were analyzed for each coreflood experiment. The oil recovery using seawater, as in the secondary recovery mode, was, on the average, 50% of original oil in place (OOIP). A sudden change in the salinity of the injected brine from seawater in the secondary recovery mode to deionized water in the tertiary mode or vice versa had a significant effect on the oil-production performance. A solution of 20% diluted seawater did not reduce the ROS in the tertiary recovery mode after the injection of seawater as a secondary recovery mode for the Indiana limestone reservoir. On the other hand, 50% diluted seawater showed a slight change in the oil production after the injection of seawater and deionized water slugs. The Ca2+, Mg2+, and SO42− ions play a key role in oil mobilization in limestone rocks. Changing the ion composition of the injected brine between the different slugs of secondary and tertiary recovery modes showed a measurable increase in the oil production.


2021 ◽  
Author(s):  
Adekunle Tirimisiyu Adeniyi ◽  
Miracle Imwonsa Osatemple ◽  
Abdulwahab Giwa

Abstract There are a good numbers of brown hydrocarbon reservoirs, with a substantial amount of bypassed oil. These reservoirs are said to be brown, because a huge chunk of its recoverable oil have been produced. Since a significant number of prominent oil fields are matured and the number of new discoveries is declining, it is imperative to assess performances of waterflooding in such reservoirs; taking an undersaturated reservoir as a case study. It should be recalled that Waterflooding is widely accepted and used as a means of secondary oil recovery method, sometimes after depletion of primary energy sources. The effects of permeability distribution on flood performances is of concerns in this study. The presence of high permeability streaks could lead to an early water breakthrough at the producers, thus reducing the sweep efficiency in the field. A solution approach adopted in this study was reserve water injection. A reverse approach because, a producing well is converted to water injector while water injector well is converted to oil producing well. This optimization method was applied to a waterflood process carried out on a reservoir field developed by a two - spot recovery design in the Niger Delta area of Nigeria that is being used as a case study. Simulation runs were carried out with a commercial reservoir oil simulator. The result showed an increase in oil production with a significant reduction in water-cut. The Net Present Value, NPV, of the project was re-evaluated with present oil production. The results of the waterflood optimization revealed that an increase in the net present value of up to 20% and an increase in cumulative production of up to 27% from the base case was achieved. The cost of produced water treatment for re-injection and rated higher water pump had little impact on the overall project economy. Therefore, it can conclude that changes in well status in wells status in an heterogenous hydrocarbon reservoir will increase oil production.


2021 ◽  
Author(s):  
Baghir Alakbar Suleimanov ◽  
Sabina Jahangir Rzayeva ◽  
Ulviyya Tahir Akhmedova

Abstract Microbial enhanced oil recovery is considered to be one of the most promising methods of stimulating formation, contributing to a higher level of oil production from long-term fields. The injection of bioreagents into a reservoir results in the creation of oil-dicing agents along with significant amount of gases, mainly carbon dioxide. In early, the authors failed to study the preparation of self-gasified biosystems and the implementation of the subcritical region (SR) under reservoir conditions. Gasified systems in the subcritical phase have better oil-displacing properties than non-gasified systems. The slippage effect determines the behavior of gas–liquid systems in the SR under reservoir conditions. Slippage occurs more easily when the pore channel has a smaller average radius. Therefore, in a heterogeneous porous medium, the filtration profile of gasified liquids in the SR should be more uniform than for a degassed liquid. The theoretical and practical foundations for the preparation of single-phase self-gasified biosystems and the implementation of the SR under reservoir conditions have been developedSR under reservoir conditions. Based on experimental studies, the superior efficiency of oil displacement by gasified biosystems compared with degassed ones has been demonstrated. The possibility of efficient use of gasified hybrid biopolymer systems has been shown.


2021 ◽  
Author(s):  
Robert Downey ◽  
Kiran Venepalli ◽  
Jim Erdle ◽  
Morgan Whitelock

Abstract The Permian Basin of west Texas is the largest and most prolific shale oil producing basin in the United States. Oil production from horizontal shale oil wells in the Permian Basin has grown from 5,000 BOPD in February, 2009 to 3.5 Million BOPD as of October, 2020, with 29,000 horizontal shale oil wells in production. The primary target for this horizontal shale oil development is the Wolfcamp shale. Oil production from these wells is characterized by high initial rates and steep declines. A few producers have begun testing EOR processes, specifically natural gas cyclic injection, or "Huff and Puff", with little information provided to date. Our objective is to introduce a novel EOR process that can greatly increase the production and recovery of oil from shale oil reservoirs, while reducing the cost per barrel of recovered oil. A superior shale oil EOR method is proposed that utilizes a triplex pump to inject a solvent liquid into the shale oil reservoir, and an efficient method to recover the injectant at the surface, for storage and reinjection. The process is designed and integrated during operation using compositional reservoir simulation in order to optimize oil recovery. Compositional simulation modeling of a Wolfcamp D horizontal producing oil well was conducted to obtain a history match on oil, gas, and water production. The matched model was then utilized to evaluate the shale oil EOR method under a variety of operating conditions. The modeling indicates that for this particular well, incremental oil production of 500% over primary EUR may be achieved in the first five years of EOR operation, and more than 700% over primary EUR after 10 years. The method, which is patented, has numerous advantages over cyclic gas injection, such as much greater oil recovery, much better economics/lower cost per barrel, lower risk of interwell communication, use of far less horsepower and fuel, shorter injection time, longer production time, smaller injection volumes, scalability, faster implementation, precludes the need for artificial lift, elimination of the need to buy and sell injectant during each cycle, ability to optimize each cycle by integration with compositional reservoir simulation modeling, and lower emissions. This superior shale oil EOR method has been modeled in the five major US shale oil plays, indicating large incremental oil recovery potential. The method is now being field tested to confirm reservoir simulation modeling projections. If implemented early in the life of a shale oil well, its application can slow the production decline rate, recover far more oil earlier and at lower cost, and extend the life of the well by several years, while precluding the need for artificial lift.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6456
Author(s):  
Ewa Knapik ◽  
Katarzyna Chruszcz-Lipska

Worldwide experiences related to geological CO2 storage show that the process of the injection of carbon dioxide into depleted oil reservoirs (CCS-EOR, Carbon Capture and Storage—Enhanced Oil Recovery) is highly profitable. The injection of CO2 will allow an increasing recovery factor (thus increasing CCS process profitability) and revitalize mature reservoirs, which may lead to oil spills due to pressure buildups. In Poland, such a solution has not yet been implemented in the industry. This work provides additional data for analysis of the possibility of the CCS-EOR method’s implementation for three potential clusters of Polish oil reservoirs located at a short distance one from another. The aim of the work was to examine the properties of reservoir fluids for these selected oil reservoirs in order to assure a better understanding of the physicochemical phenomena that accompany the gas injection process. The chemical composition of oils was determined by gas chromatography. All tested oils represent a medium black oil type with the density ranging from 795 to 843 g/L and the viscosity at 313 K, varying from 1.95 to 5.04 mm/s. The content of heavier components C25+ is up to 17 wt. %. CO2–oil MMP (Minimum Miscibility Pressure) was calculated in a CHEMCAD simulator using the Soave–Redlich–Kwong equation of state (SRK EoS). The oil composition was defined as a mixture of n-alkanes. Relatively low MMP values (ca. 8.3 MPa for all tested oils at 313 K) indicate a high potential of the EOR method, and make this geological CO2 storage form more attractive to the industry. For reservoir brines, the content of the main ions was experimentally measured and CO2 solubility under reservoir conditions was calculated. The reservoir brines showed a significant variation in properties with total dissolved solids contents varying from 17.5 to 378 g/L. CO2 solubility in brines depends on reservoir conditions and brine chemistry. The highest calculated CO2 solubility is 1.79 mol/kg, which suggest possible CO2 storage in aquifers.


2012 ◽  
Vol 524-527 ◽  
pp. 1807-1810
Author(s):  
Hao Chen ◽  
Sheng Lai Yang ◽  
Fang Fang Li ◽  
San Bo Lv ◽  
Zhi Lin Wang

CO2 flooding process has been a proven valuable tertiary enhanced oil recovery (EOR) technique. In this paper, experiment on extractive capacity of CO2 in oil saturated porous media was conducted under reservoir conditions. The main objectives of the study are to evaluate extractive capacity of CO2 in oil saturated natural cores and improve understanding of the CO2 flooding mechanisms, especially in porous media conditions. Experimental results indicated that oil production decreases while GOR increases with extractive time increases. the changes of the color and state of the production oil shows that oil component changes from light to heavy as extractive time increases. In addition, no oil was produced by water flooding after extractive experiment. Based on the experimental results and phenomena, the main conclusion drawn from this study is that under supercritical condition, CO2 has very powerful extractive capacity. And the application of CO2 flooding is recommended for enhancing oil recovery.


2018 ◽  
Author(s):  
Colin Ward ◽  
Wolfgang Heidug

Storing carbon dioxide (CO2 ) in oil reservoirs as part of CO2 -based enhanced oil recovery (CO2 -EOR) can be a cost-effective solution to reduce emissions into the atmosphere. In this paper, we analyze the economics of this option in order to estimate the amount of CO2 that could be profitably stored in different regions of the world. We consider situations in which the CO2 -EOR operator either purchases the CO2 supplied or is paid for its storage. Building upon extensive data sets concerning the characteristics and location of oil reservoirs and emission sources, the paper focuses on opportunities outside North America. Using net present value (NPV) as an indicator for profitability, we conduct a break-even analysis to relate CO2 supply prices (positive or negative) to economically viable storage potential.


2018 ◽  
Vol 7 (2) ◽  
pp. 1-13
Author(s):  
Madi Abdullah Naser ◽  
Mohamed Erhayem ◽  
Ali Hegaig ◽  
Hesham Jaber Abdullah ◽  
Muammer Younis Amer ◽  
...  

Oil recovery process is an essential element in the oil industry, in this study, a laboratory study to investigate the effect of temperature and aging time on oil recovery and understand some of the mechanisms of seawater in the injection process. In order to do that, the sandstone and carbonate cores were placed in the oven in brine to simulate realistic reservoir conditions. Then, they were aged in crude oil in the oven. After that, they were put in the seawater to recover, and this test is called a spontaneous imbibition test. The spontaneous imbibition test in this study was performed at room temperature to oven temperature 80 oC with different sandstone and carbonate rock with aging time of 1126 hours. The result shows that the impact of seawater on oil recovery in sandstone is higher than carbonate. At higher temperature, the oil recovery is more moderate than low temperature. Likewise, as the aging time increase for both sandstone and carbonate rocks the oil recovery increase. 


Sign in / Sign up

Export Citation Format

Share Document