scholarly journals A CFD-Based Comparison of Different Positive Displacement Pumps for Application in Future Automatic Transmission Systems

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2501
Author(s):  
Thomas Lobsinger ◽  
Timm Hieronymus ◽  
Hubert Schwarze ◽  
Gunther Brenner

The efficiency requirements for hydraulic pumps applied in automatic transmissions in future generations of automobiles will increase continuously. In addition, the pumps must be able to cope with multiphase flows to a certain extent. Given this background, a balanced vane pump (BVP), an internal gear pump (IGP) and a three-dimensional geared tumbling multi chamber (TMC) pump are analyzed and compared by a computational fluid dynamics (CFD) approach with ANSYS CFX and TwinMesh. Furthermore, test bench measurements are conducted to obtain experimental data to validate the numerical results. The obtained numerical results show a reasonable agreement with the experimental data. In the first CFD setup, the conveying characteristics of the pumps with pure oil regarding volumetric efficiencies, cavitation onset and pressure ripple are compared. Both the IGP and the BVP show high volumetric efficiencies and low pressure ripples whereas the TMC shows a weaker performance regarding these objectives. In the second CFD setup, an oil-bubbly air multiphase flow with different inlet volume fractions (IGVF) is investigated. It can be shown that free air changes the pumping characteristics significantly by increasing pressure and mass flow ripple and diminishing the volumetric efficiency as well as the required driving torque. The compression ratios of the pumps appear to be an important parameter that determines how the multiphase flow is handled regarding pressure and mass flow ripple. Overall, the BVP and the IGP show both a similar strong performance with and without free air. In the current development state, the TMC pump shows an inferior performance because of its lower compression ratio and therefore needs further optimization.

Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3314 ◽  
Author(s):  
Thomas Lobsinger ◽  
Timm Hieronymus ◽  
Gunther Brenner

Vane pumps are often applied in automatic transmission systems of vehicles. Future applications require the oil pumps to be more efficient and to be able to handle multiphase flow pumping situations to a certain extend. To fulfill these requirements, efficient development tools are needed. Therefore, a less demanding computational 2D model of a fixed-type balanced vane pump was derived and numerically analyzed with the commercial computational fluid dynamics (CFD) software ANSYS CFX. The meshing of the rotating parts was done with TwinMesh, using a moving mesh approach. At first, a mesh convergence study was performed. It was shown that the resolution of the radial clearances in particular had a significant influence on the predicted leakages and the volumetric efficiency. The leakage was further investigated concerning the dependence on rotational speed and delivery pressure. In the next step, multiphase flows were considered. In a first setup, vapor cavitation was analyzed and the influence of the alignment of the suction ports on its onset was derived. In a second setup, the influence of different inlet volume fractions of free air was evaluated. The employed multiphase modeling approach was presented and a sensitivity analysis on modeling parameters was performed. Overall, it was shown that free air in the suction ports changed the pumping characteristic of the vane pump significantly. Pressure and flow ripple increased, and the volumetric efficiency and the mean power demand decreased significantly with an increasing inlet volume fraction.


Author(s):  
Stephan Uhkoetter ◽  
Stefan aus der Wiesche ◽  
Michael Kursch ◽  
Christian Beck

The traditional method for hydrodynamic journal bearing analysis usually applies the lubrication theory based on the Reynolds equation and suitable empirical modifications to cover turbulence, heat transfer, and cavitation. In cases of complex bearing geometries for steam and heavy-duty gas turbines this approach has its obvious restrictions in regard to detail flow recirculation, mixing, mass balance, and filling level phenomena. These limitations could be circumvented by applying a computational fluid dynamics (CFD) approach resting closer to the fundamental physical laws. The present contribution reports about the state of the art of such a fully three-dimensional multiphase-flow CFD approach including cavitation and air entrainment for high-speed turbo-machinery journal bearings. It has been developed and validated using experimental data. Due to the high ambient shear rates in bearings, the multiphase-flow model for journal bearings requires substantial modifications in comparison to common two-phase flow simulations. Based on experimental data, it is found, that particular cavitation phenomena are essential for the understanding of steam and heavy-duty type gas turbine journal bearings.


2017 ◽  
Vol 21 (1) ◽  
pp. 515-531 ◽  
Author(s):  
Chiara Arrighi ◽  
Hocine Oumeraci ◽  
Fabio Castelli

Abstract. People's safety is the first objective to be fulfilled by flood risk mitigation measures, and according to existing reports on the causes of casualties, most of the fatalities are due to inappropriate behaviour such as walking or driving in floodwaters. Currently available experimental data on people instability in floodwaters suffer from a large dispersion primarily depending on the large variability of the physical characteristics of the subjects. This paper introduces a dimensionless mobility parameter θP for people partly immersed in flood flows, which accounts for both flood and subject characteristics. The parameter θP is capable of identifying a unique threshold of instability depending on a Froude number, thus reducing the scatter of existing experimental data. Moreover, a three-dimensional (3-D) numerical model describing the detailed geometry of a human body and reproducing a selection of critical pairs of water depth and velocity is presented. The numerical results in terms of hydrodynamic forces and force coefficients are analysed and discussed. Both the mobility parameter θP and the numerical results hint at the crucial role of the Froude number and relative submergence as the most relevant dimensionless numbers to interpret the loss of stability. Finally, the mobility parameter θP is compared with an analogous dimensionless parameter for vehicles' instability in floodwaters, providing a new contribution to support flood risk management and educating people.


2019 ◽  
Vol 81 (4) ◽  
pp. 488-499
Author(s):  
Wang Cheng ◽  
Yang Tonghui ◽  
Li Wan ◽  
Tao Li ◽  
M.H. Abuziarov ◽  
...  

The spatial problem of internal explosive loading of an elastoplastic cylindrical container filled with water in Eulerian - Lagrangian variables using multigrid algorithms is considered. A defining system of three-dimensional equations of the dynamics of gas, fluid, and elastoplastic medium is presented. For numerical modeling, a modification of S.K. Godunov scheme of the increased accuracy for both detonation products and liquids, and elastoplastic container is used. At the moving contact boundaries “detonation products - liquid”, “liquid - deformable body”, the exact solution of the Riemann's problem is used. A time dependent model is used to describe the propagation of steady-state detonation wave through an explosive from an initiation region. In both cases, the initiation of detonation occurs at the center of the charge. Two problems have been solved: the first task for the aisymmetric position of the charge, the second for the charge shifted relative to the axis of symmetry. In the first task, the processes are two-dimensional axisymmetric in nature, in the second task, the processes are essentially three-dimensional. A comparison is made of the results of calculations of the first problem using a three-dimensional method with a solution using a previously developed two-dimensional axisymmetric method and experimental data. Good agreement is observed between the numerical results for the maximum velocities and circumferential strains obtained by various methods and experimental data. There is good agreement between the numerical results obtained by various methods and the known experimental data. Comparison of the results of solving the first and second problems shows a significant effect of the position of the charge on the wave processes in the liquid, the processes of loading the container and its elastoplastic deformation. The dynamic behavior of a gas bubble with detonation products is analyzed. A significant deviation of the bubble shape from the spherical one, caused by the action of shock waves reflected from the structure, is shown. Comparison of the results of solving the first and second problems showed a significant effect of the charge position on wave processes in a liquid, the processes of loading a container and its elastoplastic deformation. In particular, in the second problem, shock waves of higher amplitude are observed in the liquid when reflected from the walls of the container.


2011 ◽  
Vol 97-98 ◽  
pp. 1085-1090 ◽  
Author(s):  
Rui Deng ◽  
De Bo Huang ◽  
Guang Li Zhou ◽  
Hua Wei Sun

In the present work, the CFD software FLUENT is used to calculate the ship resistance and simulate the flow field around it. Comparison of the numerical results with experimental data of the ship without interceptor shows basically satisfactory agreement in the case of high-speed. In order to get the right parameters of the interceptor for the ship, some two dimensional calculation is taken to study the influence of interceptor with different size. The simulation of the three dimensional vessel with interceptor is also included, and the effect is discussed.


1992 ◽  
Vol 114 (3) ◽  
pp. 538-547 ◽  
Author(s):  
C. Hah ◽  
L. Reid

A numerical study based on the three-dimensional Reynolds-averaged Navier–Stokes equation has been conducted to investigate the detailed flow physics inside a transonic compressor. Three-dimensional shock structure, shock-boundary layer interaction, flow separation, radial mixing, and wake development are all investigated at design and off-design conditions. Experimental data based on laser anemometer measurements are used to assess the overall quality of the numerical solution. An additional experimental study to investigate end-wall flow with a hot film was conducted, and these results are compared with the numerical results. Detailed comparison with experimental data indicates that the overall features of the three-dimensional shock structure, the shock-boundary layer interaction, and the wake development are all calculated very well in the numerical solution. The numerical results are further analyzed to examine the radial mixing phenomena in the transonic compressor. A thin sheet of particles is injected in the numerical solution upstream of the compressor. The movement of particles is traced with a three-dimensional plotting package. This numerical survey of tracer concentration reveals the fundamental mechanisms of radial transport in this transonic compressor. Strong radially outward flow is observed inside a separated flow region and this outward flow accounts for about 80 percent of the total radial transport. The radially inward flow is mainly due to the traditional secondary flow.


Author(s):  
Erfan Niazi ◽  
M. J. Mahjoob ◽  
Ardeshir Bangian

Cavitation in pumps is one of the most important causes of damage to pumps impellers/inducers. A numerical model is developed here to simulate the pump hydraulics in different conditions. Experiments are also conducted to validate the computer simulations. To verify the numerical model, the h–m˙ (head versus mass flow rate) of the model is compared with the experimental data. The system is then run under cavitation state. Two methods are applied to monitor the cavitation threshold: first by using stroboscope and observing cavitation bubbles through the transparent casing of the pump and second by checking the NPSHA value for cavitation based on ISO3555. The paper then compares the experimental and numerical results to find the strengths and weaknesses of the numerical model.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 471
Author(s):  
Gianluca Marinaro ◽  
Emma Frosina ◽  
Adolfo Senatore

In this paper, an innovative solution to minimize noise emission, acting on the flow ripple, in a prototype External Gear Pump (EGP) is presented. Firstly, a new tool capable to completely simulate this pump’s typologies, called EgeMATor, is presented; the hydraulic model, adopted for the simulation, is based on a lumped parameter method using a control volume approach. Starting from the pump drawing, thanks to different subroutines developed in different environments interconnected, it is possible to analyze an EGP. Results have been compared with the outputs of a three-dimensional CFD numerical model built up using a commercial code, already used with success by the authors. In the second section, an innovative solution to reduce the flow ripple is implemented. This technology is called Alternative Capacitive Volumes (ACV) and works by controlling and uniformizing the reverse flow, performing a consistent reduction of flow non-uniformity amplitude. In particular, a high reduction of the flow non-uniformity is notable in the frequency domain on the second fundamental frequency. The technology is easy to accommodate in a pump housing, especially for high-pressure components, and it helps with reducing the fluid-borne noise.


Author(s):  
Stephan Uhkoetter ◽  
Stefan aus der Wiesche ◽  
Michael Kursch ◽  
Christian Beck

The traditional method for hydrodynamic journal bearing analysis usually applies the lubrication theory based on the Reynolds equation and suitable empirical modifications to cover turbulence, heat transfer, and cavitation. In cases of complex bearing geometries for steam and heavy-duty gas turbines, this approach has its obvious restrictions in regard to detail flow recirculation, mixing, mass balance, and filling level phenomena. These limitations could be circumvented by applying a computational fluid dynamics (CFD) approach, resting closer to the fundamental physical laws. The present contribution reports about the state of the art of such a fully three-dimensional multiphase-flow CFD approach, including cavitation and air entrainment for high-speed turbomachinery journal bearings. It has been developed and validated using experimental data. Due to the high ambient shear rates in bearings, the multiphase-flow model for journal bearings requires substantial modifications in comparison to common two-phase flow simulations. Based on experimental data, it is found, that particular cavitation phenomena are essential for the understanding of steam and heavy-duty-type gas turbine journal bearings.


2011 ◽  
Vol 339 ◽  
pp. 276-282
Author(s):  
Jun Jie Tong ◽  
Ji Wen Cen ◽  
Jin Liang Xu

The FLUENT6.1 software is applied to simulate the supersonic flow in micro convergent-divergent nozzle which is fabricated from flat silicon wafers. The simulation is complemented by parallel computing steady 2-D and 3-D Navier-stokes equations to study the three-dimensional wall effects on temperature and velocity inside the micro nozzle. Also the performances of fluent mass coefficients and thrust force efficiencies are studied. It is observed by the study that three-dimensional wall effects are not negligible in flat micro nozzle. The velocity of fluid in three-dimensional nozzle is less than the corresponding velocity of fluid in two-dimensional nozzle significantly, while the temperature of fluid in three-dimensional nozzle is much higher than the corresponding temperature of fluid in two-dimensional nozzle. The mass flow rate and thrust at the exit of 2-D nozzle are greater than the corresponding mass flow rate and thrust at the exit of three-dimensional. With the throat Renaults being increased, the corresponding differences between two-dimensional numerical results and three-dimensional numerical results decreased accordingly. Two-dimensional numerical results can not correctly predict the actual mass flow rate and thrust at the exit of micro nozzle.


Sign in / Sign up

Export Citation Format

Share Document