scholarly journals Robust Clustering Routing Method for Wireless Sensor Networks Considering the Locust Search Scheme

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3019
Author(s):  
Alma Rodríguez ◽  
Marco Pérez-Cisneros ◽  
Julio C. Rosas-Caro ◽  
Carolina Del-Valle-Soto ◽  
Jorge Gálvez ◽  
...  

Multiple applications of sensor devices in the form of a Wireless Sensor Network (WSN), such as those represented by the Internet of Things and monitoring dangerous geographical spaces, have attracted the attention by several scientific communities. Despite their interesting properties, sensors present an adverse characteristic: they manage very limited energy. Under such conditions, saving energy represents one of the most important concepts in designing effective protocols for WSNs. The objective of a protocol is to increase the network lifetime through the reduction of energy consumed by each sensor. In this paper, a robust clustering routing protocol for WSNs is introduced. The scheme uses the Locust Search (LS-II) method to determine the number of cluster heads and to identify the optimal cluster heads. Once the cluster heads are recognized, the other sensor elements are assigned to their nearest corresponding cluster head. Numerical simulations exhibit competitive results and demonstrate that the proposed protocol allows for the minimization of the energy consumption, extending the network lifetime in comparison with other popular clustering routing protocols.

Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1835 ◽  
Author(s):  
Ruan ◽  
Huang

Since wireless sensor networks (WSNs) are powered by energy-constrained batteries, many energy-efficient routing protocols have been proposed to extend the network lifetime. However, most of the protocols do not well balance the energy consumption of the WSNs. The hotspot problem caused by unbalanced energy consumption in the WSNs reduces the network lifetime. To solve the problem, this paper proposes a PSO (Particle Swarm Optimization)-based uneven dynamic clustering multi-hop routing protocol (PUDCRP). In the PUDCRP protocol, the distribution of the clusters will change dynamically when some nodes fail. The PSO algorithm is used to determine the area where the candidate CH (cluster head) nodes are located. The adaptive clustering method based on node distribution makes the cluster distribution more reasonable, which balances the energy consumption of the network more effectively. In order to improve the energy efficiency of multi-hop transmission between the BS (Base Station) and CH nodes, we also propose a connecting line aided route construction method to determine the most appropriate next hop. Compared with UCCGRA, multi-hop EEBCDA, EEMRP, CAMP, PSO-ECHS and PSO-SD, PUDCRP prolongs the network lifetime by between 7.36% and 74.21%. The protocol significantly balances the energy consumption of the network and has better scalability for various sizes of network.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Mohammad Baniata ◽  
Jiman Hong

The recent advances in sensing and communication technologies such as wireless sensor networks (WSN) have enabled low-priced distributed monitoring systems that are the foundation of smart cities. These advances are also helping to monitor smart cities and making our living environments workable. However, sensor nodes are constrained in energy supply if they have no constant power supply. Moreover, communication links can be easily failed because of unequal node energy depletion. The energy constraints and link failures affect the performance and quality of the sensor network. Therefore, designing a routing protocol that minimizes energy consumption and maximizes the network lifetime should be considered in the design of the routing protocol for WSN. In this paper, we propose an Energy-Efficient Unequal Chain Length Clustering (EEUCLC) protocol which has a suboptimal multihop routing algorithm to reduce the burden on the cluster head and a probability-based cluster head selection algorithm to prolong the network lifetime. Simulation results show that the EEUCLC mechanism enhanced the energy balance and prolonged the network lifetime compared to other related protocols.


2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Mingchuan Zhang ◽  
Ruijuan Zheng ◽  
Ying Li ◽  
Qingtao Wu ◽  
Liang Song

Energy of nodes is an important factor that affects the performance of Wireless Sensor Networks (WSNs), especially in the case of existing selfish nodes, which attracted many researchers’ attention recently. In this paper, we present a reputation-based uneven clustering routing protocol (R-bUCRP) considering both energy saving and reputation assessment. In the cluster establishment phase, we adopt an uneven clustering mechanism which controls the competitive scope of cluster head candidates to save the energy of WSNs. In the cluster heads election phase, the residual energy and reputation value are used as the indexes to select the optimal cluster head, where the reputation mechanism is introduced to support reputation assessment. Simulation results show that the proposed R-bUCRP can save node energy consumption, balance network energy distribution, and prolong network lifetime.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jun Wang ◽  
Zhuangzhuang Du ◽  
Zhengkun He ◽  
Xunyang Wang

Balancing energy consumption using the clustering routing algorithms is one of the most practical solutions for prolonging the lifetime of resource-limited wireless sensor networks (WSNs). However, existing protocols cannot adequately minimize and balance the total network energy dissipation due to the additional tasks of data acquisition and transmission of cluster heads. In this paper, a cluster-head rotating election routing protocol is proposed to alleviate the problem. We discovered that the regular hierarchical clustering method and the scheme of cluster-head election area division had positive effects on reducing the energy consumption of cluster head election and intracluster communication. The election criterion composed of location and residual energy factor was proved to lower the probability of premature death of cluster heads. The chain multihop path of intercluster communication was performed to save the energy of data aggregation to the base station. The simulation results showed that the network lifetime can be efficiently extended by regulating the adjustment parameters of the protocol. Compared with LEACH, I-LEACH, EEUC, and DDEEC, the algorithm demonstrated significant performance advantages by using the number of active nodes and residual energy of nodes as the evaluation indicators. On the basis of these results, the proposed routing protocols can be utilized to increase the capability of WSNs against energy constraints.


2019 ◽  
Vol 8 (4) ◽  
pp. 11996-12003

Wireless Sensor network becomes an essential part of Internet of things paradigm due their scalability, ease of deployment and user-friendly interface. However, certain issues like high energy consumption, low network lifetime and optimum quality of service requirement force researchers to develop new routing protocols. In WSNs, the routing protocols are utilized to obtain paths having high quality links and high residual energy nodes for forwarding data towards the sink. Clustering provide the better solution to the WSN challenges by creating access points in the form of cluster head (CH). However, CH must tolerate additional burden for coordinating network activities. After considering these issues, the proposed work designs a moth flame optimization (MFO) based Cross Layer Clustering Optimal (MFO-CLCO) algorithm to consequently optimize the network energy, network lifetime, network delay and network throughput. Multi-hop wireless communication between cluster heads (CHs) and base station (BS) is employed along with MFO to attain optimum path cost. The simulation results demonstrate that the proposed scheme outperforms existing schemes in terms of energy consumption, network lifetime, delay and throughput.


Energy efficiency is one of the major open research challenges for Mobile Wireless Sensor Networks. This paper evaluates EERP which is an integrated solution for routing data according to user preferences and context. Proposed protocol contains layers for optimal cluster head election, data aggregation and filtering of sensed data. Each layer deploys intelligent mobile agents for performing its designated function efficiently. The work has been evaluated on standard metrics available in literature. Initial implementation and evaluation indicated extended network life time, transmission delay and higher packet delivery ratio as well.


Author(s):  
Tanya Pathak ◽  
Vinay Kumar Singh ◽  
Anurag Sharma

In the recent years, an efficient design of a Wireless Sensor Network has become important in the area of research. The major challenges in the design of Wireless Sensor Network is to improve the network lifetime. The main difficulty for sensor node is to survive in that monitoring area for the longer time that means there is a need to increase the lifetime of the sensor nodes by optimizing the energy and distance. There are various existing routing protocols in which optimal routing can be achieved like Data-Centric, Hierarchical and Location-based routing protocols. In this paper, new power efficient routing protocol is being proposed that not only select the shortest path between the source node and sink node for data transmission but also maximizes the lifetime of the participating nodes by selecting the best path for sending the data packet across the network. The main objective of this research is to develop a faster algorithm to find the energy efficient route for Wireless Sensor Network. Simulation results shows that this strategy achieves long network lifetime when compared to the other standard protocols.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Parvinder Singh ◽  
Rajeshwar Singh

A wireless sensor network consists of numerous low-power microsensor devices that can be deployed in a geographical area for remote sensing, surveillance, control, and monitoring applications. The advancements of wireless devices in terms of user-friendly interface, size, and deployment cost have given rise to many smart applications of wireless sensor networks (WSNs). However, certain issues like energy efficiency, long lifetime, and communication reliability restrict their large scale utilization. In WSNs, the cluster-based routing protocols assist nodes to collect, aggregate, and forward sensed data from event regions towards the sink node through minimum cost links. A clustering method helps to improve data transmission efficiency by dividing the sensor nodes into small groups. However, improper cluster head (CH) selection may affect the network lifetime, average network energy, and other quality of service (QoS) parameters. In this paper, a multiobjective clustering strategy is proposed to optimize the energy consumption, network lifetime, network throughput, and network delay. A fitness function has been formulated for heterogenous and homogenous wireless sensor networks. This fitness function is utilized to select an optimum CH for energy minimization and load balancing of cluster heads. A new hybrid clustered routing protocol is proposed based on fitness function. The simulation results conclude that the proposed protocol achieves better efficiency in increasing the network lifetime by 63%, 26%, and 10% compared with three well-known heterogeneous protocols: DEEC, EDDEEC, and ATEER, respectively. The proposed strategy also attains better network stability than a homogenous LEACH protocol.


2014 ◽  
Vol 610 ◽  
pp. 927-932
Author(s):  
Ahmed Rouaba ◽  
Nouamane Soualmi ◽  
He Zun Wen

A wireless sensor network (WSN) consists of large number of autonomous sensors nodes; these nodes communicate with each other in dispersed manner to observe the environment. WSNs become one of the most important researches in modern communication systems. The energy source of nodes is limited and practically it is impossible to change or charge the battery. In order to save energy and increases the life time of battery in WSNs. Many energy routing protocols using the clustering were proposed in the literature. Low Energy Adaptive Clustering Hierarchy (LEACH) is the most famous routing protocol. In this paper we propose a new algorithm to choose the cluster head which has the highest energy. We shared the network to four regions, between them 90° for each part we find the powerful sensor between the sensors groups, and this last will be the cluster head of this round. Each sensor sends its data to the nearest cluster head and this last will send it to the sink. The same work for five and six clusters heads with sink in the center and in the corner (100, 0) is done.


Sign in / Sign up

Export Citation Format

Share Document