scholarly journals Influence of Graphene Nano Particles and Antioxidants with Waste Cooking Oil Biodiesel and Diesel Blends on Engine Performance and Emissions

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4306
Author(s):  
Sandeep Krishnakumar ◽  
T. M. Yunus Khan ◽  
C. R. Rajashekhar ◽  
Manzoore Elahi M. Soudagar ◽  
Asif Afzal ◽  
...  

The main reason for the limited usage of biodiesel is it tends to oxidize when exposed to air. It is anticipated that the addition of an antioxidant along with graphene nano particle improves combustion of diesel-biodiesel blend. In the present research biodiesel made from the transesterification of waste cooking oil is used. Three synthetic antioxidants butylated hydroxytoluene (BHT), 2(3)-t-butyl-4-hydroxyanisole (BHA) and tert butylhydroquinone (TBHQ) along with 30 ppm of graphene nano particle were added at a volume fraction of 1000 ppm to diesel–biodiesel blends (B20). The performance and emission tests were performed at constant engine speed of 1500 rpm. Because of the inclusion of graphene nano particles, surface area to the volume ratio of the fuel is augmented enhancing the mixing ability and chemical responsiveness of the fuel during burning causing superior performance, combustion and emission aspects of compression ignition engine. The results revealed that there was a slight increase in brake power and brake thermal efficiency of about 0.29%, 0.585%, 0.58% and 6.22%, 3.11%, 3.31% for B20GrBHT10000, B20GrBHA1000 and B20GrTBHQ1000, respectively, compared to B20. Additionally, BSFC, HC and NOx emissions were reduced to considerable levels for the reformed fuel.

Author(s):  
Balaji Selvaraj ◽  
Prabhu Subramaniam ◽  
Chinnasamy Chenniyapan ◽  
Prakash Thangavel

In this study an experimental investigation has been carried out on compression ignition engine to understand the engine behaviour like its performance and emission characteristics while using Aluminium oxide (Al2O3) nano particle as additive with a blend of diesel and biodiesel sourced from Jatropha and Pongamia vegetable oil. The Alumina nano particles are characterized by X- ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis. The biodiesel is made engine ready with adoptable properties by carrying out standard alkali transesterification process. The alumina nano particles are blended with jatropha in the mass fractions of 50, 100, 150 ppm and with Pongamia biodiesel in the mass fractions of 40, 60 ppm using an ultrasonicator. The experiments are carried out in single cylinder four stroke variable compression ratio diesel engine by varying the load using eddy current dynamometer. The experimental results reveal that there is a significant improvement in the performance characteristics like brake thermal efficiency (BTHE) and brake specific fuel consumption (BSFC) and reduction in the emission constituents like carbon monoxide (CO) and unburned hydrocarbon (HC) but in turn increase in nitric oxide (NOx) emissions were observed.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 798 ◽  
Author(s):  
Meshack Hawi ◽  
Ahmed Elwardany ◽  
Mohamed Ismail ◽  
Mahmoud Ahmed

The effect of iron-doped cerium oxide (FeCeO2) nanoparticles as a fuel additive was experimentally investigated with waste cooking oil methyl ester (WCOME) in a four-stroke, single cylinder, direct injection diesel engine. The study aimed at the reduction of harmful emissions of diesel engines including oxides of nitrogen (NOx) and soot. Two types of nanoparticles were used: cerium oxide doped with 10% iron and cerium oxide doped with 20% iron, to further investigate the influence of the doping level on the nanoparticle activity. The nanoparticles were dispersed in the tested fuels at a dosage of 90 ppm with the aid of an ultrasonic homogenizer. Tests were conducted at a constant engine speed of 2000 rpm and varying loads (from 0 to 12 N.m) with neat diesel (D100) and biodiesel–diesel blends of 30% WCOME and 70% diesel by volume (B30). The engine combustion, performance, and emission characteristics for the fuel blends with nanoparticles were compared with neat diesel as the base fuel. The test results showed improvement in the peak cylinder pressure by approximately 3.5% with addition of nanoparticles to the fuel. A reduction in NOx emissions by up to 15.7% were recorded, while there was no noticeable change in unburned hydrocarbon (HC) emissions. Carbon monoxide (CO) emission was reduced by up to 24.6% for B30 and 15.4% for B30 with nano-additives. Better engine performance was recorded for B30 with 20% FeCeO2 as compared to 10% FeCeO2, in regard to cylinder pressure and emissions. The brake specific fuel consumption was lower for the fuel blend of B30 with 10% FeCeO2 nanoparticles, in low-to-medium loads and comparable to D100 at high loads. Hence, a higher brake thermal efficiency was recorded for the blend in low-to-medium loads compared to D100.


Author(s):  
Y Ren ◽  
Z H Huang ◽  
D M Jiang ◽  
L X Liu ◽  
K Zeng ◽  
...  

The performance and emissions of a compression ignition engine fuelled with diesel/dimethoxymethane (DMM) blends were studied. The results showed that the engine's thermal efficiency increased and the diesel equivalent brake specific fuel consumption (b.s.f.c.) decreased as the oxygen mass fraction (or DMM mass fraction) of the diesel/DMM blends increased. This change in the diesel/DMM blends was caused by an increased fraction of the premixed combustion phase, an oxygen enrichment, and an improvement in the diffusive combustion phase. A remarkable reduction in the exhaust CO and smoke can be achieved when operating on the diesel/DMM blend. Flat NO x/smoke and thermal efficiency/smoke curves are presented when operating on the diesel/DMM fuel blends, and a simultaneous reduction in both NO x and smoke can be realized at large DMM addition. Thermal efficiency and NO x give the highest value at 2 per cent oxygen mass fraction (or 5 per cent DMM volume fraction) for the combustion of diesel/DMM blends.


Author(s):  
H. Sharon ◽  
Joel Jackson R. ◽  
Prabha C.

Feed stock cost and NOX emission are the major barriers for commercialization of biodiesel. Waste cooking oil is well identified as one of the cheapest feed stocks for biodiesel production. This chapter reduces NOX emission of waste cooking oil biodiesel. Test fuel blends are prepared by mixing diesel (20 to 50 v/v%), butanol (5 v/v%), and waste cooking oil biodiesel (45 to 75 v/v%). Fuel properties of waste cooking oil biodiesel are enhanced due to addition of diesel and butanol. Brake specific energy consumption of the blends is higher than diesel fuel. Harmful emissions like carbon monoxide, nitrous oxide, and smoke opacity are lower for blends than diesel fuel. Increasing biodiesel concentration in blend also reduces hydrocarbon emission to a significant extent. The obtained results justify the suitability of proposed cheap blends for diesel engine emission reduction.


Sign in / Sign up

Export Citation Format

Share Document